肝纤维化的CT分期:优化切片厚度和纹理特征

Wendong Li, Yufan Zeng, Xuejun Zhang, Yu Huang, L. Long, H. Fujita
{"title":"肝纤维化的CT分期:优化切片厚度和纹理特征","authors":"Wendong Li, Yufan Zeng, Xuejun Zhang, Yu Huang, L. Long, H. Fujita","doi":"10.1109/ISBB.2011.6107698","DOIUrl":null,"url":null,"abstract":"Texture features are useful in analyzing the hepatic fibrosis on CT images, however properly selecting features and slice thickness is still uncertain. In this paper, five types of slice thickness and 15 features extracted from co-occurrence matrix are investigated to select the optimal parameters. Each combination will be checked by using SVM (Support Vector machine) with leave-one-case-out method. 149 cases including 6 grades of hepatic fibrosis are acquired by CT scanner and divided into two groups: normal & mild fibrosis vs severe fibrosis & typical cirrhosis. Iteration test on all of the subsets indicates that 5 to 7 features with slice thickness of 1.25mm is the optimal combination with relative higher accuracy in classification of fibrosis.","PeriodicalId":345164,"journal":{"name":"International Symposium on Bioelectronics and Bioinformations 2011","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Staging the hepatic fibrosis on CT images: Optimizing the slice thickness and texture features\",\"authors\":\"Wendong Li, Yufan Zeng, Xuejun Zhang, Yu Huang, L. Long, H. Fujita\",\"doi\":\"10.1109/ISBB.2011.6107698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Texture features are useful in analyzing the hepatic fibrosis on CT images, however properly selecting features and slice thickness is still uncertain. In this paper, five types of slice thickness and 15 features extracted from co-occurrence matrix are investigated to select the optimal parameters. Each combination will be checked by using SVM (Support Vector machine) with leave-one-case-out method. 149 cases including 6 grades of hepatic fibrosis are acquired by CT scanner and divided into two groups: normal & mild fibrosis vs severe fibrosis & typical cirrhosis. Iteration test on all of the subsets indicates that 5 to 7 features with slice thickness of 1.25mm is the optimal combination with relative higher accuracy in classification of fibrosis.\",\"PeriodicalId\":345164,\"journal\":{\"name\":\"International Symposium on Bioelectronics and Bioinformations 2011\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Bioelectronics and Bioinformations 2011\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBB.2011.6107698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Bioelectronics and Bioinformations 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBB.2011.6107698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在肝纤维化的CT图像分析中,纹理特征是有用的,但如何选择纹理特征和切片厚度仍然是一个不确定的问题。本文研究了从共现矩阵中提取的5种切片厚度和15种特征,以选择最优参数。每个组合将使用支持向量机(SVM)与留一个案例的方法进行检查。通过CT扫描获得6级肝纤维化149例,分为正常及轻度纤维化和严重及典型肝硬化两组。所有子集的迭代测试表明,切片厚度为1.25mm的5 ~ 7个特征是纤维化分类的最佳组合,准确率相对较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Staging the hepatic fibrosis on CT images: Optimizing the slice thickness and texture features
Texture features are useful in analyzing the hepatic fibrosis on CT images, however properly selecting features and slice thickness is still uncertain. In this paper, five types of slice thickness and 15 features extracted from co-occurrence matrix are investigated to select the optimal parameters. Each combination will be checked by using SVM (Support Vector machine) with leave-one-case-out method. 149 cases including 6 grades of hepatic fibrosis are acquired by CT scanner and divided into two groups: normal & mild fibrosis vs severe fibrosis & typical cirrhosis. Iteration test on all of the subsets indicates that 5 to 7 features with slice thickness of 1.25mm is the optimal combination with relative higher accuracy in classification of fibrosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信