基于长短期记忆(LSTM)的工业流量计气体流动特性预测研究进展

Mohd Faizal Mustafa, Ahmad Muizuddin Talib, Rahimi Zaman Jusoh A. Rashid, I. Ismail, A. Awang, Mohamad Naufal Mohamad Saad, Muhd. Safwan Zahari
{"title":"基于长短期记忆(LSTM)的工业流量计气体流动特性预测研究进展","authors":"Mohd Faizal Mustafa, Ahmad Muizuddin Talib, Rahimi Zaman Jusoh A. Rashid, I. Ismail, A. Awang, Mohamad Naufal Mohamad Saad, Muhd. Safwan Zahari","doi":"10.1109/ICFTSC57269.2022.10039824","DOIUrl":null,"url":null,"abstract":"Prediction of production flow rates of industrial flow meter will bring significance value in terms of production and maintenance optimization, and mass balancing in oil and gas industry. This paper proposes a long short-term memory-based model to predict production flow of an industrial flow meter. Besides, this paper also discusses the significance of training sample size and hyperparameter of machine learning model upon the accuracy of the prediction. This paper found that with simpler model architecture (32 LSTM units and 8 Rectified Linear Units) has produced a prediction with 1.4 Root Mean Square Error, that has similar performance of a more complex model configuration (64 LSTM units).","PeriodicalId":386462,"journal":{"name":"2022 International Conference on Future Trends in Smart Communities (ICFTSC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of Gas Flow Characteristic Prediction for Industrial Flow Meter using Long Short-Term Memory (LSTM)\",\"authors\":\"Mohd Faizal Mustafa, Ahmad Muizuddin Talib, Rahimi Zaman Jusoh A. Rashid, I. Ismail, A. Awang, Mohamad Naufal Mohamad Saad, Muhd. Safwan Zahari\",\"doi\":\"10.1109/ICFTSC57269.2022.10039824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of production flow rates of industrial flow meter will bring significance value in terms of production and maintenance optimization, and mass balancing in oil and gas industry. This paper proposes a long short-term memory-based model to predict production flow of an industrial flow meter. Besides, this paper also discusses the significance of training sample size and hyperparameter of machine learning model upon the accuracy of the prediction. This paper found that with simpler model architecture (32 LSTM units and 8 Rectified Linear Units) has produced a prediction with 1.4 Root Mean Square Error, that has similar performance of a more complex model configuration (64 LSTM units).\",\"PeriodicalId\":386462,\"journal\":{\"name\":\"2022 International Conference on Future Trends in Smart Communities (ICFTSC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Future Trends in Smart Communities (ICFTSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFTSC57269.2022.10039824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Future Trends in Smart Communities (ICFTSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFTSC57269.2022.10039824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

工业流量计生产流量的预测对油气行业的生产和维修优化以及质量平衡具有重要的价值。提出了一种基于长短期记忆的工业流量计生产流程预测模型。此外,本文还讨论了训练样本量和机器学习模型的超参数对预测精度的影响。本文发现,使用更简单的模型架构(32个LSTM单元和8个整流线性单元)产生的预测具有1.4均方根误差,与更复杂的模型配置(64个LSTM单元)具有相似的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Gas Flow Characteristic Prediction for Industrial Flow Meter using Long Short-Term Memory (LSTM)
Prediction of production flow rates of industrial flow meter will bring significance value in terms of production and maintenance optimization, and mass balancing in oil and gas industry. This paper proposes a long short-term memory-based model to predict production flow of an industrial flow meter. Besides, this paper also discusses the significance of training sample size and hyperparameter of machine learning model upon the accuracy of the prediction. This paper found that with simpler model architecture (32 LSTM units and 8 Rectified Linear Units) has produced a prediction with 1.4 Root Mean Square Error, that has similar performance of a more complex model configuration (64 LSTM units).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信