Yinan Fang, P. Philippopoulos, D. Culcer, W. A. Coish, S. Chesi
{"title":"空穴自旋量子比特的最新进展","authors":"Yinan Fang, P. Philippopoulos, D. Culcer, W. A. Coish, S. Chesi","doi":"10.1088/2633-4356/acb87e","DOIUrl":null,"url":null,"abstract":"\n In recent years, hole-spin qubits based on semiconductor quantum dots have advanced at a rapid pace. We first review the main potential advantages of these hole-spin qubits with respect to their electron-spin counterparts, and give a general theoretical framework describing them. The basic features of spin-orbit coupling and hyperfine interaction in the valence band are discussed, together with consequences on coherence and spin manipulation. In the second part of the article we provide a survey of experimental realizations, which spans a relatively broad spectrum of devices based on GaAs, Si, or Si/Ge heterostructures. We conclude with a brief outlook.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Recent advances in hole-spin qubits\",\"authors\":\"Yinan Fang, P. Philippopoulos, D. Culcer, W. A. Coish, S. Chesi\",\"doi\":\"10.1088/2633-4356/acb87e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In recent years, hole-spin qubits based on semiconductor quantum dots have advanced at a rapid pace. We first review the main potential advantages of these hole-spin qubits with respect to their electron-spin counterparts, and give a general theoretical framework describing them. The basic features of spin-orbit coupling and hyperfine interaction in the valence band are discussed, together with consequences on coherence and spin manipulation. In the second part of the article we provide a survey of experimental realizations, which spans a relatively broad spectrum of devices based on GaAs, Si, or Si/Ge heterostructures. We conclude with a brief outlook.\",\"PeriodicalId\":345750,\"journal\":{\"name\":\"Materials for Quantum Technology\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Quantum Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2633-4356/acb87e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Quantum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-4356/acb87e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In recent years, hole-spin qubits based on semiconductor quantum dots have advanced at a rapid pace. We first review the main potential advantages of these hole-spin qubits with respect to their electron-spin counterparts, and give a general theoretical framework describing them. The basic features of spin-orbit coupling and hyperfine interaction in the valence band are discussed, together with consequences on coherence and spin manipulation. In the second part of the article we provide a survey of experimental realizations, which spans a relatively broad spectrum of devices based on GaAs, Si, or Si/Ge heterostructures. We conclude with a brief outlook.