基于LQR的平面倒立摆轨迹跟踪仿真

Shu-Juan Mou, Feng Liu
{"title":"基于LQR的平面倒立摆轨迹跟踪仿真","authors":"Shu-Juan Mou, Feng Liu","doi":"10.1109/IMCCC.2015.152","DOIUrl":null,"url":null,"abstract":"This paper establishes the nonlinear model of the planar inverted pendulum system by using Lagrange equation, then decouples the model around the system's equilibrium position with Taylor series expansion, gets the same linear model in the direction of and. According to the linear optimal control theory, designs a LQR controller, its base cart positioning prior to the pendulum stabilization. Finally, realizes the simulation of positioning, circular and shape of infinity trajectories tracking control of the base cart, while keeping the pendulum stable. The experiments show that, the controller is simple, and in different forms of motion with good stability, high control precision, validates the effectiveness of the algorithm.","PeriodicalId":438549,"journal":{"name":"2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Trajectory Tracking Simulation of the Planar Inverted Pendulum Based on LQR\",\"authors\":\"Shu-Juan Mou, Feng Liu\",\"doi\":\"10.1109/IMCCC.2015.152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes the nonlinear model of the planar inverted pendulum system by using Lagrange equation, then decouples the model around the system's equilibrium position with Taylor series expansion, gets the same linear model in the direction of and. According to the linear optimal control theory, designs a LQR controller, its base cart positioning prior to the pendulum stabilization. Finally, realizes the simulation of positioning, circular and shape of infinity trajectories tracking control of the base cart, while keeping the pendulum stable. The experiments show that, the controller is simple, and in different forms of motion with good stability, high control precision, validates the effectiveness of the algorithm.\",\"PeriodicalId\":438549,\"journal\":{\"name\":\"2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCCC.2015.152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCCC.2015.152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文利用拉格朗日方程建立了平面倒立摆系统的非线性模型,然后用泰勒级数展开对系统平衡位置周围的模型进行解耦,得到了和方向上的相同线性模型。根据线性最优控制理论,设计了一种LQR控制器,其小车定位优先于摆锤稳定。最后,在保持摆锤稳定的前提下,实现了对基座小车的定位仿真、圆轨迹和无限轨迹的形状跟踪控制。实验表明,该控制器结构简单,且在不同运动形式下具有良好的稳定性,控制精度高,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory Tracking Simulation of the Planar Inverted Pendulum Based on LQR
This paper establishes the nonlinear model of the planar inverted pendulum system by using Lagrange equation, then decouples the model around the system's equilibrium position with Taylor series expansion, gets the same linear model in the direction of and. According to the linear optimal control theory, designs a LQR controller, its base cart positioning prior to the pendulum stabilization. Finally, realizes the simulation of positioning, circular and shape of infinity trajectories tracking control of the base cart, while keeping the pendulum stable. The experiments show that, the controller is simple, and in different forms of motion with good stability, high control precision, validates the effectiveness of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信