一种将卷积网络映射到具有内存计算节点的片上网络的新方案

Jiayi Liu, Kejie Huang
{"title":"一种将卷积网络映射到具有内存计算节点的片上网络的新方案","authors":"Jiayi Liu, Kejie Huang","doi":"10.1109/ISOCC50952.2020.9332940","DOIUrl":null,"url":null,"abstract":"Computing-In Memory (CIM) has been widely used to accelerate the inferencing speed of deep learning. Network-on-Chips (NoCs) are usually used together with CIM to enable the versatile ability of the hardware. This paper proposes a bandwidth aware mapping scheme to minimize both hops and bandwidth requirement. The simulation results show that the proposed scheme could reduce the hops and bandwidth requirements by more than 33.57% and 46.13%, respectively.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Novel Scheme to Map Convolutional Networks to Network-on-Chip with Computing-In-Memory Nodes\",\"authors\":\"Jiayi Liu, Kejie Huang\",\"doi\":\"10.1109/ISOCC50952.2020.9332940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing-In Memory (CIM) has been widely used to accelerate the inferencing speed of deep learning. Network-on-Chips (NoCs) are usually used together with CIM to enable the versatile ability of the hardware. This paper proposes a bandwidth aware mapping scheme to minimize both hops and bandwidth requirement. The simulation results show that the proposed scheme could reduce the hops and bandwidth requirements by more than 33.57% and 46.13%, respectively.\",\"PeriodicalId\":270577,\"journal\":{\"name\":\"2020 International SoC Design Conference (ISOCC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC50952.2020.9332940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9332940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

内存计算(CIM)被广泛用于提高深度学习的推理速度。片上网络(noc)通常与CIM一起使用,以实现硬件的多功能。本文提出了一种带宽感知映射方案,以最小化跳数和带宽需求。仿真结果表明,该方案可将跳数和带宽要求分别降低33.57%和46.13%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Scheme to Map Convolutional Networks to Network-on-Chip with Computing-In-Memory Nodes
Computing-In Memory (CIM) has been widely used to accelerate the inferencing speed of deep learning. Network-on-Chips (NoCs) are usually used together with CIM to enable the versatile ability of the hardware. This paper proposes a bandwidth aware mapping scheme to minimize both hops and bandwidth requirement. The simulation results show that the proposed scheme could reduce the hops and bandwidth requirements by more than 33.57% and 46.13%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信