基于广义赫斯特指数的心电人体认证

Fatemeh Parastesh Karegar, A. Fallah, S. Rashidi
{"title":"基于广义赫斯特指数的心电人体认证","authors":"Fatemeh Parastesh Karegar, A. Fallah, S. Rashidi","doi":"10.1109/IRANIANCEE.2017.7985480","DOIUrl":null,"url":null,"abstract":"Using the ECG as a biometric trait provides significant advantages such as universality, uniqueness, robustness to attacks, liveness detection, continuous authentication and etc. The chaotic behavior of ECG has been proven in the studies and nonlinear methods have been applied to study the nonlinear properties of this signal. In this paper we apply four different nonlinear Methods, Rescaled Range Analysis (RSA), Higuchi's Fractal Dimension (HFD), Detrended Fluctuation Analysis (DFA) and Generalized Hurst Exponent (GHE) to extract features for authentication system. Support Vector Machine is used to classify the fractal feature together with some fiducial features. The proposed approach has been tested using 18 different subjects ECG signal of MIT-BIH Normal Sinus Rhythm Database. The obtained results show that the authentication accuracy is 99.06±0.26%.","PeriodicalId":161929,"journal":{"name":"2017 Iranian Conference on Electrical Engineering (ICEE)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"ECG based human authentication with using Generalized Hurst Exponent\",\"authors\":\"Fatemeh Parastesh Karegar, A. Fallah, S. Rashidi\",\"doi\":\"10.1109/IRANIANCEE.2017.7985480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the ECG as a biometric trait provides significant advantages such as universality, uniqueness, robustness to attacks, liveness detection, continuous authentication and etc. The chaotic behavior of ECG has been proven in the studies and nonlinear methods have been applied to study the nonlinear properties of this signal. In this paper we apply four different nonlinear Methods, Rescaled Range Analysis (RSA), Higuchi's Fractal Dimension (HFD), Detrended Fluctuation Analysis (DFA) and Generalized Hurst Exponent (GHE) to extract features for authentication system. Support Vector Machine is used to classify the fractal feature together with some fiducial features. The proposed approach has been tested using 18 different subjects ECG signal of MIT-BIH Normal Sinus Rhythm Database. The obtained results show that the authentication accuracy is 99.06±0.26%.\",\"PeriodicalId\":161929,\"journal\":{\"name\":\"2017 Iranian Conference on Electrical Engineering (ICEE)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Iranian Conference on Electrical Engineering (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANCEE.2017.7985480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2017.7985480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

将心电作为一种生物特征,具有通用性、唯一性、抗攻击的鲁棒性、活动性检测、连续认证等显著优点。研究已经证实了心电信号的混沌行为,并应用非线性方法研究了该信号的非线性特性。本文应用重标度极差分析(RSA)、Higuchi分形维数(HFD)、去趋势波动分析(DFA)和广义赫斯特指数(GHE)四种不同的非线性方法提取认证系统的特征。使用支持向量机对分形特征和一些基准特征进行分类。该方法已在MIT-BIH正常窦性心律数据库的18个不同受试者的心电图信号中进行了测试。结果表明,该方法的鉴别精度为99.06±0.26%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECG based human authentication with using Generalized Hurst Exponent
Using the ECG as a biometric trait provides significant advantages such as universality, uniqueness, robustness to attacks, liveness detection, continuous authentication and etc. The chaotic behavior of ECG has been proven in the studies and nonlinear methods have been applied to study the nonlinear properties of this signal. In this paper we apply four different nonlinear Methods, Rescaled Range Analysis (RSA), Higuchi's Fractal Dimension (HFD), Detrended Fluctuation Analysis (DFA) and Generalized Hurst Exponent (GHE) to extract features for authentication system. Support Vector Machine is used to classify the fractal feature together with some fiducial features. The proposed approach has been tested using 18 different subjects ECG signal of MIT-BIH Normal Sinus Rhythm Database. The obtained results show that the authentication accuracy is 99.06±0.26%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信