使用特征选择技术诊断乳腺癌

Sabrine Tounsi, I.F. Kallel, Mohamed Kallel
{"title":"使用特征选择技术诊断乳腺癌","authors":"Sabrine Tounsi, I.F. Kallel, Mohamed Kallel","doi":"10.1109/IRASET52964.2022.9738334","DOIUrl":null,"url":null,"abstract":"This study focuses on feature selection for breast cancer diagnosis. Since the feature selection became a crucial task in machine learning, we will experiment some filter, wrapper approach and embedded approach on Wisconsin breast cancer dataset, which is commonly used by researchers who use machine-learning methods for breast cancer diagnosis. The performance of the feature selection method is evaluated by classification accuracy using two kinds of classifiers SVM and KNN.","PeriodicalId":377115,"journal":{"name":"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Breast cancer diagnosis using feature selection techniques\",\"authors\":\"Sabrine Tounsi, I.F. Kallel, Mohamed Kallel\",\"doi\":\"10.1109/IRASET52964.2022.9738334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on feature selection for breast cancer diagnosis. Since the feature selection became a crucial task in machine learning, we will experiment some filter, wrapper approach and embedded approach on Wisconsin breast cancer dataset, which is commonly used by researchers who use machine-learning methods for breast cancer diagnosis. The performance of the feature selection method is evaluated by classification accuracy using two kinds of classifiers SVM and KNN.\",\"PeriodicalId\":377115,\"journal\":{\"name\":\"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRASET52964.2022.9738334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRASET52964.2022.9738334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的重点是乳腺癌诊断的特征选择。由于特征选择成为机器学习中的关键任务,我们将在使用机器学习方法进行乳腺癌诊断的研究人员常用的Wisconsin乳腺癌数据集上实验一些过滤器、包装方法和嵌入方法。利用SVM和KNN两种分类器对特征选择方法的分类精度进行评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breast cancer diagnosis using feature selection techniques
This study focuses on feature selection for breast cancer diagnosis. Since the feature selection became a crucial task in machine learning, we will experiment some filter, wrapper approach and embedded approach on Wisconsin breast cancer dataset, which is commonly used by researchers who use machine-learning methods for breast cancer diagnosis. The performance of the feature selection method is evaluated by classification accuracy using two kinds of classifiers SVM and KNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信