基于SGO和Kapur函数的噪声污染RGB图像阈值分割

N. Raguram, R. Rahul, C. Raghul, D. Sankaran
{"title":"基于SGO和Kapur函数的噪声污染RGB图像阈值分割","authors":"N. Raguram, R. Rahul, C. Raghul, D. Sankaran","doi":"10.1109/RTECC.2018.8625695","DOIUrl":null,"url":null,"abstract":"Image thresholding is an extensively accepted segmentation practice to extract the section of attention from a digital picture. Here, multi-thresholding is projected for the RGB picture with Social Group Optimization (SGO) algorithm. The chief motivation of this work is to investigate the presentation of well-known image segmentation procedure known as Kapur’s function. SGO and Kapur integrated procedures considered to enhance RGB picture stained with noises, like Gaussian (GN) and Speckle (SN). The capability of Kapur’s function is established with the well-known image quality measures available. The simulation outcome authenticates that, for the considered problem, Kapur’s offers better result for the original and noise stained images.","PeriodicalId":445688,"journal":{"name":"2018 International Conference on Recent Trends in Electrical, Control and Communication (RTECC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise Tainted RGB ImageThresholding by Integrating SGO and Kapur’s Function\",\"authors\":\"N. Raguram, R. Rahul, C. Raghul, D. Sankaran\",\"doi\":\"10.1109/RTECC.2018.8625695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image thresholding is an extensively accepted segmentation practice to extract the section of attention from a digital picture. Here, multi-thresholding is projected for the RGB picture with Social Group Optimization (SGO) algorithm. The chief motivation of this work is to investigate the presentation of well-known image segmentation procedure known as Kapur’s function. SGO and Kapur integrated procedures considered to enhance RGB picture stained with noises, like Gaussian (GN) and Speckle (SN). The capability of Kapur’s function is established with the well-known image quality measures available. The simulation outcome authenticates that, for the considered problem, Kapur’s offers better result for the original and noise stained images.\",\"PeriodicalId\":445688,\"journal\":{\"name\":\"2018 International Conference on Recent Trends in Electrical, Control and Communication (RTECC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Recent Trends in Electrical, Control and Communication (RTECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTECC.2018.8625695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Recent Trends in Electrical, Control and Communication (RTECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTECC.2018.8625695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像阈值分割是一种被广泛接受的分割方法,用于从数字图像中提取注意力部分。本文采用社会群体优化(Social Group Optimization, SGO)算法对RGB图像进行多阈值化投影。这项工作的主要动机是研究众所周知的图像分割过程的表示,即卡普尔函数。考虑了SGO和Kapur集成方法来增强被高斯(GN)和散斑(SN)等噪声污染的RGB图像。Kapur函数的能力是用已知的图像质量度量来建立的。仿真结果证明,对于所考虑的问题,Kapur算法对于原始图像和噪声图像都有较好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise Tainted RGB ImageThresholding by Integrating SGO and Kapur’s Function
Image thresholding is an extensively accepted segmentation practice to extract the section of attention from a digital picture. Here, multi-thresholding is projected for the RGB picture with Social Group Optimization (SGO) algorithm. The chief motivation of this work is to investigate the presentation of well-known image segmentation procedure known as Kapur’s function. SGO and Kapur integrated procedures considered to enhance RGB picture stained with noises, like Gaussian (GN) and Speckle (SN). The capability of Kapur’s function is established with the well-known image quality measures available. The simulation outcome authenticates that, for the considered problem, Kapur’s offers better result for the original and noise stained images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信