A. Paun, C. Vladeanu, I. Marghescu, S. E. Assad, J. Carlach, R. Quéré
{"title":"用于并行Turbo-TCM方案的新型递归卷积GF(2N)编码器","authors":"A. Paun, C. Vladeanu, I. Marghescu, S. E. Assad, J. Carlach, R. Quéré","doi":"10.1109/AICT.2010.76","DOIUrl":null,"url":null,"abstract":"In this paper, parallel turbo phase shift keying – trellis coded modulation (Turbo PSK-TCM) schemes are designed using recursive convolutional encoders over Galois field GF(2^N). These encoders are designed using the nonlinear left-circulate (LCIRC) function. The LCIRC function performs a bit left circulation over the representation word. An optimum 1-delay GF(2^N) recursive convolutional encoder scheme using LCIRC (RC-LCIRC) is proposed for PSK-TCM schemes. The minimum Euclidian distance is estimated for these PSK-TCM schemes and it is shown that these structures offer the maximum coding gains. However, the RC-LCIRC encoders are less complex than the corresponding binary encoders. The optimum RC-LCIRC encoder is used as component encoder of a parallel turbo PSK-TCM transmission scheme, using the iterative multilevel log-MAP algorithm in the receiver. The bit error rate (BER) is estimated by simulation for the proposed Turbo PSK-TCM transmissions over an additive white Gaussian noise (AWGN) channel, and the results are similar to the conventional Turbo-TCM schemes.","PeriodicalId":339151,"journal":{"name":"2010 Sixth Advanced International Conference on Telecommunications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"New Recursive Convolutional GF(2N) Encoders for Parallel Turbo-TCM Schemes\",\"authors\":\"A. Paun, C. Vladeanu, I. Marghescu, S. E. Assad, J. Carlach, R. Quéré\",\"doi\":\"10.1109/AICT.2010.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, parallel turbo phase shift keying – trellis coded modulation (Turbo PSK-TCM) schemes are designed using recursive convolutional encoders over Galois field GF(2^N). These encoders are designed using the nonlinear left-circulate (LCIRC) function. The LCIRC function performs a bit left circulation over the representation word. An optimum 1-delay GF(2^N) recursive convolutional encoder scheme using LCIRC (RC-LCIRC) is proposed for PSK-TCM schemes. The minimum Euclidian distance is estimated for these PSK-TCM schemes and it is shown that these structures offer the maximum coding gains. However, the RC-LCIRC encoders are less complex than the corresponding binary encoders. The optimum RC-LCIRC encoder is used as component encoder of a parallel turbo PSK-TCM transmission scheme, using the iterative multilevel log-MAP algorithm in the receiver. The bit error rate (BER) is estimated by simulation for the proposed Turbo PSK-TCM transmissions over an additive white Gaussian noise (AWGN) channel, and the results are similar to the conventional Turbo-TCM schemes.\",\"PeriodicalId\":339151,\"journal\":{\"name\":\"2010 Sixth Advanced International Conference on Telecommunications\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Sixth Advanced International Conference on Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICT.2010.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth Advanced International Conference on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT.2010.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Recursive Convolutional GF(2N) Encoders for Parallel Turbo-TCM Schemes
In this paper, parallel turbo phase shift keying – trellis coded modulation (Turbo PSK-TCM) schemes are designed using recursive convolutional encoders over Galois field GF(2^N). These encoders are designed using the nonlinear left-circulate (LCIRC) function. The LCIRC function performs a bit left circulation over the representation word. An optimum 1-delay GF(2^N) recursive convolutional encoder scheme using LCIRC (RC-LCIRC) is proposed for PSK-TCM schemes. The minimum Euclidian distance is estimated for these PSK-TCM schemes and it is shown that these structures offer the maximum coding gains. However, the RC-LCIRC encoders are less complex than the corresponding binary encoders. The optimum RC-LCIRC encoder is used as component encoder of a parallel turbo PSK-TCM transmission scheme, using the iterative multilevel log-MAP algorithm in the receiver. The bit error rate (BER) is estimated by simulation for the proposed Turbo PSK-TCM transmissions over an additive white Gaussian noise (AWGN) channel, and the results are similar to the conventional Turbo-TCM schemes.