大规模私下报告广告印象的协议

M. Green, Watson Ladd, Ian Miers
{"title":"大规模私下报告广告印象的协议","authors":"M. Green, Watson Ladd, Ian Miers","doi":"10.1145/2976749.2978407","DOIUrl":null,"url":null,"abstract":"We present a protocol to enable privacy preserving advertising reporting at scale. Unlike previous systems, our work scales to millions of users and tens of thousands of distinct ads. Our approach builds on the homomorphic encryption approach proposed by Adnostic, but uses new cryptographic proof techniques to efficiently report billions of ad impressions a day using an additively homomorphic voting schemes. Most importantly, our protocol scales without imposing high loads on trusted third parties. Finally, we investigate a cost effective method to privately deliver ads with computational private information retrieval.","PeriodicalId":432261,"journal":{"name":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"A Protocol for Privately Reporting Ad Impressions at Scale\",\"authors\":\"M. Green, Watson Ladd, Ian Miers\",\"doi\":\"10.1145/2976749.2978407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a protocol to enable privacy preserving advertising reporting at scale. Unlike previous systems, our work scales to millions of users and tens of thousands of distinct ads. Our approach builds on the homomorphic encryption approach proposed by Adnostic, but uses new cryptographic proof techniques to efficiently report billions of ad impressions a day using an additively homomorphic voting schemes. Most importantly, our protocol scales without imposing high loads on trusted third parties. Finally, we investigate a cost effective method to privately deliver ads with computational private information retrieval.\",\"PeriodicalId\":432261,\"journal\":{\"name\":\"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2976749.2978407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2976749.2978407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

我们提出了一个协议,使隐私保护的广告报告规模。与以前的系统不同,我们的工作扩展到数百万用户和数万个不同的广告。我们的方法建立在Adnostic提出的同态加密方法的基础上,但使用新的加密证明技术,使用加法同态投票方案有效地报告每天数十亿的广告印象。最重要的是,我们的协议在扩展时不会对受信任的第三方施加高负载。最后,我们研究了一种具有成本效益的基于计算私有信息检索的私有广告投放方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Protocol for Privately Reporting Ad Impressions at Scale
We present a protocol to enable privacy preserving advertising reporting at scale. Unlike previous systems, our work scales to millions of users and tens of thousands of distinct ads. Our approach builds on the homomorphic encryption approach proposed by Adnostic, but uses new cryptographic proof techniques to efficiently report billions of ad impressions a day using an additively homomorphic voting schemes. Most importantly, our protocol scales without imposing high loads on trusted third parties. Finally, we investigate a cost effective method to privately deliver ads with computational private information retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信