Jay Nanduri, Yuting Jia, Anand Oka, John Beaver, Yung-wen Liu
{"title":"微软使用机器学习和优化来减少电子商务欺诈","authors":"Jay Nanduri, Yuting Jia, Anand Oka, John Beaver, Yung-wen Liu","doi":"10.1287/inte.2019.1017","DOIUrl":null,"url":null,"abstract":"The authors discuss Microsoft’s development of a fraud-management system that uses customized long-term and short-term sequential machine learning models to detect both historical and emerging frau...","PeriodicalId":430990,"journal":{"name":"INFORMS J. Appl. Anal.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Microsoft Uses Machine Learning and Optimization to Reduce E-Commerce Fraud\",\"authors\":\"Jay Nanduri, Yuting Jia, Anand Oka, John Beaver, Yung-wen Liu\",\"doi\":\"10.1287/inte.2019.1017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors discuss Microsoft’s development of a fraud-management system that uses customized long-term and short-term sequential machine learning models to detect both historical and emerging frau...\",\"PeriodicalId\":430990,\"journal\":{\"name\":\"INFORMS J. Appl. Anal.\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INFORMS J. Appl. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/inte.2019.1017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS J. Appl. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/inte.2019.1017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microsoft Uses Machine Learning and Optimization to Reduce E-Commerce Fraud
The authors discuss Microsoft’s development of a fraud-management system that uses customized long-term and short-term sequential machine learning models to detect both historical and emerging frau...