A. Lojowska, A. Ciupuliga, G. Papaefthymiou, L. van der Sluis
{"title":"荷兰电动汽车额外负荷的影响:一个西北欧案例研究","authors":"A. Lojowska, A. Ciupuliga, G. Papaefthymiou, L. van der Sluis","doi":"10.1109/IEVC.2012.6183219","DOIUrl":null,"url":null,"abstract":"The deployment of EVs leads to a shift of the demand from transport to the power sector. This paper shows that in order to perform a realistic evaluation of the EVs integration impacts on a power system, the future developments in the increase of interconnection capacities should be taken into account. For this, three different charging scenarios are developed and tested using a North-Western Europe system model, together with a unit commitment and economic dispatch tool. EVs load time series are generated for each scenario by a stochastic model which is based on real commuting patterns of the Dutch population. The results indicate that EVs load is mainly supplied by conventional generation: gas, coal and nuclear. It is also noted that EVs lead to a very low increase in wind power utilization and even to a substitution of hydro generation.","PeriodicalId":134818,"journal":{"name":"2012 IEEE International Electric Vehicle Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The impacts of extra load from EVs in the Netherlands: A North-West Europe case study\",\"authors\":\"A. Lojowska, A. Ciupuliga, G. Papaefthymiou, L. van der Sluis\",\"doi\":\"10.1109/IEVC.2012.6183219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deployment of EVs leads to a shift of the demand from transport to the power sector. This paper shows that in order to perform a realistic evaluation of the EVs integration impacts on a power system, the future developments in the increase of interconnection capacities should be taken into account. For this, three different charging scenarios are developed and tested using a North-Western Europe system model, together with a unit commitment and economic dispatch tool. EVs load time series are generated for each scenario by a stochastic model which is based on real commuting patterns of the Dutch population. The results indicate that EVs load is mainly supplied by conventional generation: gas, coal and nuclear. It is also noted that EVs lead to a very low increase in wind power utilization and even to a substitution of hydro generation.\",\"PeriodicalId\":134818,\"journal\":{\"name\":\"2012 IEEE International Electric Vehicle Conference\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Electric Vehicle Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEVC.2012.6183219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Electric Vehicle Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEVC.2012.6183219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The impacts of extra load from EVs in the Netherlands: A North-West Europe case study
The deployment of EVs leads to a shift of the demand from transport to the power sector. This paper shows that in order to perform a realistic evaluation of the EVs integration impacts on a power system, the future developments in the increase of interconnection capacities should be taken into account. For this, three different charging scenarios are developed and tested using a North-Western Europe system model, together with a unit commitment and economic dispatch tool. EVs load time series are generated for each scenario by a stochastic model which is based on real commuting patterns of the Dutch population. The results indicate that EVs load is mainly supplied by conventional generation: gas, coal and nuclear. It is also noted that EVs lead to a very low increase in wind power utilization and even to a substitution of hydro generation.