风险价值和条件风险价值选择的顺序消除方法

A. Hepworth, Michael P. Atkinson, R. Szechtman
{"title":"风险价值和条件风险价值选择的顺序消除方法","authors":"A. Hepworth, Michael P. Atkinson, R. Szechtman","doi":"10.1109/WSC.2017.8247963","DOIUrl":null,"url":null,"abstract":"Conditional Value-at-Risk (CVaR) is a widely used metric of risk in portfolio analysis, interpreted as the expected loss when the loss is larger than a threshold defined by a quantile. This work is motivated by situations where the CVaR is given, and the objective is to find the portfolio with the largest or smallest quantile that meets the CVaR constraint. We define our problem within the classic stochastic multi-armed bandit (MAB) framework, and present two algorithms. One that can be used to find the portfolio with largest or smallest loss threshold that satisfies the CVaR constraint with high probability, and another that determines the portfolio with largest or smallest probability of exceeding a loss threshold implied by a CVaR constraint, also at some desired probability level.","PeriodicalId":145780,"journal":{"name":"2017 Winter Simulation Conference (WSC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A sequential elimination approach to value-at-risk and conditional value-at-risk selection\",\"authors\":\"A. Hepworth, Michael P. Atkinson, R. Szechtman\",\"doi\":\"10.1109/WSC.2017.8247963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conditional Value-at-Risk (CVaR) is a widely used metric of risk in portfolio analysis, interpreted as the expected loss when the loss is larger than a threshold defined by a quantile. This work is motivated by situations where the CVaR is given, and the objective is to find the portfolio with the largest or smallest quantile that meets the CVaR constraint. We define our problem within the classic stochastic multi-armed bandit (MAB) framework, and present two algorithms. One that can be used to find the portfolio with largest or smallest loss threshold that satisfies the CVaR constraint with high probability, and another that determines the portfolio with largest or smallest probability of exceeding a loss threshold implied by a CVaR constraint, also at some desired probability level.\",\"PeriodicalId\":145780,\"journal\":{\"name\":\"2017 Winter Simulation Conference (WSC)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2017.8247963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2017.8247963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

条件风险值(CVaR)是投资组合分析中广泛使用的风险度量,被解释为当损失大于由分位数定义的阈值时的预期损失。这项工作的动机是给定CVaR的情况,目标是找到符合CVaR约束的最大或最小分位数的投资组合。我们在经典的随机多臂强盗(MAB)框架中定义了我们的问题,并提出了两种算法。一种方法可用于寻找具有高概率满足CVaR约束的最大或最小损失阈值的投资组合,另一种方法确定具有最大或最小概率超过CVaR约束所隐含的损失阈值的投资组合,也是在某个期望的概率水平上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A sequential elimination approach to value-at-risk and conditional value-at-risk selection
Conditional Value-at-Risk (CVaR) is a widely used metric of risk in portfolio analysis, interpreted as the expected loss when the loss is larger than a threshold defined by a quantile. This work is motivated by situations where the CVaR is given, and the objective is to find the portfolio with the largest or smallest quantile that meets the CVaR constraint. We define our problem within the classic stochastic multi-armed bandit (MAB) framework, and present two algorithms. One that can be used to find the portfolio with largest or smallest loss threshold that satisfies the CVaR constraint with high probability, and another that determines the portfolio with largest or smallest probability of exceeding a loss threshold implied by a CVaR constraint, also at some desired probability level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信