从STG到扩展突发模式机器

Jochen Beister, Gernot Eckstein, Ralf Wollowski
{"title":"从STG到扩展突发模式机器","authors":"Jochen Beister, Gernot Eckstein, Ralf Wollowski","doi":"10.1109/ASYNC.1999.761530","DOIUrl":null,"url":null,"abstract":"A method is presented for deriving a system of parallel extended-burst-mode (XBM) machines from a signal transition graph (STG) specifying required input-output behaviour. First, a primitive finite-state machine is derived as the most general, sequential solution, from which allowable concurrency can still be recognized. Output concurrency is dealt with by decomposition (output partitioning, omission of irrelevant inputs). The component FSMs, with input concurrency only, are tested for XBM feasibility and-if positive-their XBM specifications are constructed. The entire procedure is systematic and is illustrated by deriving two XBM machines from an STG with input and output concurrency. We propose to view the STG as the most general and most precise causal specification of any asynchronous design problem, above and beyond considerations of circuit models and delay assumptions.","PeriodicalId":285714,"journal":{"name":"Proceedings. Fifth International Symposium on Advanced Research in Asynchronous Circuits and Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"From STG to extended-burst-mode machines\",\"authors\":\"Jochen Beister, Gernot Eckstein, Ralf Wollowski\",\"doi\":\"10.1109/ASYNC.1999.761530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method is presented for deriving a system of parallel extended-burst-mode (XBM) machines from a signal transition graph (STG) specifying required input-output behaviour. First, a primitive finite-state machine is derived as the most general, sequential solution, from which allowable concurrency can still be recognized. Output concurrency is dealt with by decomposition (output partitioning, omission of irrelevant inputs). The component FSMs, with input concurrency only, are tested for XBM feasibility and-if positive-their XBM specifications are constructed. The entire procedure is systematic and is illustrated by deriving two XBM machines from an STG with input and output concurrency. We propose to view the STG as the most general and most precise causal specification of any asynchronous design problem, above and beyond considerations of circuit models and delay assumptions.\",\"PeriodicalId\":285714,\"journal\":{\"name\":\"Proceedings. Fifth International Symposium on Advanced Research in Asynchronous Circuits and Systems\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Fifth International Symposium on Advanced Research in Asynchronous Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASYNC.1999.761530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fifth International Symposium on Advanced Research in Asynchronous Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASYNC.1999.761530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种从信号转换图(STG)中推导并行扩展突发模式(XBM)机器系统的方法,该系统指定了所需的输入输出行为。首先,将原始有限状态机导出为最通用的顺序解决方案,从中仍然可以识别允许的并发性。输出并发性通过分解来处理(输出分区,省略不相关的输入)。对仅具有输入并发性的组件fsm进行XBM可行性测试,如果是,则构造它们的XBM规范。整个过程是系统的,并通过从具有输入和输出并发性的STG导出两台XBM机器来说明。我们建议将STG视为任何异步设计问题的最一般和最精确的因果规范,超越电路模型和延迟假设的考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From STG to extended-burst-mode machines
A method is presented for deriving a system of parallel extended-burst-mode (XBM) machines from a signal transition graph (STG) specifying required input-output behaviour. First, a primitive finite-state machine is derived as the most general, sequential solution, from which allowable concurrency can still be recognized. Output concurrency is dealt with by decomposition (output partitioning, omission of irrelevant inputs). The component FSMs, with input concurrency only, are tested for XBM feasibility and-if positive-their XBM specifications are constructed. The entire procedure is systematic and is illustrated by deriving two XBM machines from an STG with input and output concurrency. We propose to view the STG as the most general and most precise causal specification of any asynchronous design problem, above and beyond considerations of circuit models and delay assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信