瞬态供电系统的动态能量突发标度

Andres Gomez, L. Sigrist, M. Magno, L. Benini, L. Thiele
{"title":"瞬态供电系统的动态能量突发标度","authors":"Andres Gomez, L. Sigrist, M. Magno, L. Benini, L. Thiele","doi":"10.3850/9783981537079_0403","DOIUrl":null,"url":null,"abstract":"Energy harvesting is generally seen to be the key to power cyber-physical systems in a low-cost, long term, efficient manner. However, harvesting has traditionally been coupled with large energy storage devices to mitigate the effects of the source's variability. The emerging class of transiently powered systems avoids this issue by performing computation only as a function of the harvested energy, minimizing the obtrusive and expensive storage element. In this work, we present an efficient Energy Management Unit (EMU) to supply generic loads when the average harvested power is much smaller than required for sustained system operation. By building up charge to a pre-defined energy level, the EMU can generate short energy bursts predictably, even under variable harvesting conditions. Furthermore, we propose a dynamic energy burst scaling (DEBS) technique to adjust these bursts to the load's requirements. Using a simple interface, the load can dynamically configure the EMU to supply small bursts of energy at its optimal power point, independent from the harvester's operating point. Extensive theoretical and experimental data demonstrate the high energy efficiency of our approach, reaching up to 73.6% even when harvesting only 110 μW to supply a load of 3.89mW.","PeriodicalId":311352,"journal":{"name":"2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Dynamic energy burst scaling for transiently powered systems\",\"authors\":\"Andres Gomez, L. Sigrist, M. Magno, L. Benini, L. Thiele\",\"doi\":\"10.3850/9783981537079_0403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy harvesting is generally seen to be the key to power cyber-physical systems in a low-cost, long term, efficient manner. However, harvesting has traditionally been coupled with large energy storage devices to mitigate the effects of the source's variability. The emerging class of transiently powered systems avoids this issue by performing computation only as a function of the harvested energy, minimizing the obtrusive and expensive storage element. In this work, we present an efficient Energy Management Unit (EMU) to supply generic loads when the average harvested power is much smaller than required for sustained system operation. By building up charge to a pre-defined energy level, the EMU can generate short energy bursts predictably, even under variable harvesting conditions. Furthermore, we propose a dynamic energy burst scaling (DEBS) technique to adjust these bursts to the load's requirements. Using a simple interface, the load can dynamically configure the EMU to supply small bursts of energy at its optimal power point, independent from the harvester's operating point. Extensive theoretical and experimental data demonstrate the high energy efficiency of our approach, reaching up to 73.6% even when harvesting only 110 μW to supply a load of 3.89mW.\",\"PeriodicalId\":311352,\"journal\":{\"name\":\"2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3850/9783981537079_0403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3850/9783981537079_0403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

能量收集通常被视为以低成本、长期、高效的方式为网络物理系统供电的关键。然而,传统上,收集已经与大型能量存储设备相结合,以减轻源的可变性的影响。新兴的瞬态供电系统避免了这个问题,它只将计算作为收集能量的函数,最大限度地减少了突兀和昂贵的存储元件。在这项工作中,我们提出了一个高效的能源管理单元(EMU),当平均收获功率远小于持续系统运行所需的功率时,可以提供一般负载。通过将电荷积累到预定的能量水平,即使在可变的收集条件下,EMU也能产生可预测的短能量爆发。此外,我们提出了一种动态能量突发缩放(DEBS)技术来调整这些突发以满足负载的要求。通过一个简单的接口,负载可以动态配置EMU,在最佳功率点提供小的能量爆发,独立于收割机的工作点。大量的理论和实验数据证明了我们的方法的高能量效率,即使只收集110 μW来提供3.89mW的负载,也可以达到73.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic energy burst scaling for transiently powered systems
Energy harvesting is generally seen to be the key to power cyber-physical systems in a low-cost, long term, efficient manner. However, harvesting has traditionally been coupled with large energy storage devices to mitigate the effects of the source's variability. The emerging class of transiently powered systems avoids this issue by performing computation only as a function of the harvested energy, minimizing the obtrusive and expensive storage element. In this work, we present an efficient Energy Management Unit (EMU) to supply generic loads when the average harvested power is much smaller than required for sustained system operation. By building up charge to a pre-defined energy level, the EMU can generate short energy bursts predictably, even under variable harvesting conditions. Furthermore, we propose a dynamic energy burst scaling (DEBS) technique to adjust these bursts to the load's requirements. Using a simple interface, the load can dynamically configure the EMU to supply small bursts of energy at its optimal power point, independent from the harvester's operating point. Extensive theoretical and experimental data demonstrate the high energy efficiency of our approach, reaching up to 73.6% even when harvesting only 110 μW to supply a load of 3.89mW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信