A. Snavely, L. Carrington, N. Wolter, Jesús Labarta, Rosa M. Badia, A. Purkayastha
{"title":"性能建模与预测框架","authors":"A. Snavely, L. Carrington, N. Wolter, Jesús Labarta, Rosa M. Badia, A. Purkayastha","doi":"10.1109/SC.2002.10004","DOIUrl":null,"url":null,"abstract":"Cycle-accurate simulation is far too slow for modeling the expected performance of full parallel applications on large HPC systems. And just running an application on a system and observing wallclock time tells you nothing about why the application performs as it does (and is anyway impossible on yet-to-be-built systems). Here we present a framework for performance modeling and prediction that is faster than cycle-accurate simulation, more informative than simple benchmarking, and is shown useful for performance investigations in several dimensions.","PeriodicalId":302800,"journal":{"name":"ACM/IEEE SC 2002 Conference (SC'02)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"263","resultStr":"{\"title\":\"A Framework for Performance Modeling and Prediction\",\"authors\":\"A. Snavely, L. Carrington, N. Wolter, Jesús Labarta, Rosa M. Badia, A. Purkayastha\",\"doi\":\"10.1109/SC.2002.10004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cycle-accurate simulation is far too slow for modeling the expected performance of full parallel applications on large HPC systems. And just running an application on a system and observing wallclock time tells you nothing about why the application performs as it does (and is anyway impossible on yet-to-be-built systems). Here we present a framework for performance modeling and prediction that is faster than cycle-accurate simulation, more informative than simple benchmarking, and is shown useful for performance investigations in several dimensions.\",\"PeriodicalId\":302800,\"journal\":{\"name\":\"ACM/IEEE SC 2002 Conference (SC'02)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"263\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 2002 Conference (SC'02)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2002.10004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2002 Conference (SC'02)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2002.10004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Framework for Performance Modeling and Prediction
Cycle-accurate simulation is far too slow for modeling the expected performance of full parallel applications on large HPC systems. And just running an application on a system and observing wallclock time tells you nothing about why the application performs as it does (and is anyway impossible on yet-to-be-built systems). Here we present a framework for performance modeling and prediction that is faster than cycle-accurate simulation, more informative than simple benchmarking, and is shown useful for performance investigations in several dimensions.