使用性能计数器的GPU内核的统计功率建模

Hitoshi Nagasaka, N. Maruyama, Akira Nukada, Toshio Endo, S. Matsuoka
{"title":"使用性能计数器的GPU内核的统计功率建模","authors":"Hitoshi Nagasaka, N. Maruyama, Akira Nukada, Toshio Endo, S. Matsuoka","doi":"10.1109/GREENCOMP.2010.5598315","DOIUrl":null,"url":null,"abstract":"We present a statistical approach for estimating power consumption of GPU kernels. We use the GPU performance counters that are exposed for CUDA applications, and train a linear regression model where performance counters are used as independent variables and power consumption is the dependent variable. For model training and evaluation, we use publicly available CUDA applications, consisting of 49 kernels in the CUDA SDK and the Rodinia benchmark suite. Our regression model achieves highly accurate estimates for many of the tested kernels, where the average error ratio is 4.7%. However, we also find that it fails to yield accurate estimates for kernels with texture reads because of the lack of performance counters for monitoring texture accesses, resulting in significant underestimation for such kernels.","PeriodicalId":262148,"journal":{"name":"International Conference on Green Computing","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"186","resultStr":"{\"title\":\"Statistical power modeling of GPU kernels using performance counters\",\"authors\":\"Hitoshi Nagasaka, N. Maruyama, Akira Nukada, Toshio Endo, S. Matsuoka\",\"doi\":\"10.1109/GREENCOMP.2010.5598315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a statistical approach for estimating power consumption of GPU kernels. We use the GPU performance counters that are exposed for CUDA applications, and train a linear regression model where performance counters are used as independent variables and power consumption is the dependent variable. For model training and evaluation, we use publicly available CUDA applications, consisting of 49 kernels in the CUDA SDK and the Rodinia benchmark suite. Our regression model achieves highly accurate estimates for many of the tested kernels, where the average error ratio is 4.7%. However, we also find that it fails to yield accurate estimates for kernels with texture reads because of the lack of performance counters for monitoring texture accesses, resulting in significant underestimation for such kernels.\",\"PeriodicalId\":262148,\"journal\":{\"name\":\"International Conference on Green Computing\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"186\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Green Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GREENCOMP.2010.5598315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Green Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GREENCOMP.2010.5598315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 186

摘要

提出了一种估算GPU内核功耗的统计方法。我们使用为CUDA应用程序公开的GPU性能计数器,并训练线性回归模型,其中性能计数器用作自变量,功耗作为因变量。对于模型训练和评估,我们使用公开可用的CUDA应用程序,由CUDA SDK中的49个内核和Rodinia基准套件组成。我们的回归模型对许多被测试的内核实现了高度准确的估计,其中平均错误率为4.7%。然而,我们也发现,由于缺乏用于监视纹理访问的性能计数器,它无法对具有纹理读取的内核产生准确的估计,从而导致对此类内核的严重低估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical power modeling of GPU kernels using performance counters
We present a statistical approach for estimating power consumption of GPU kernels. We use the GPU performance counters that are exposed for CUDA applications, and train a linear regression model where performance counters are used as independent variables and power consumption is the dependent variable. For model training and evaluation, we use publicly available CUDA applications, consisting of 49 kernels in the CUDA SDK and the Rodinia benchmark suite. Our regression model achieves highly accurate estimates for many of the tested kernels, where the average error ratio is 4.7%. However, we also find that it fails to yield accurate estimates for kernels with texture reads because of the lack of performance counters for monitoring texture accesses, resulting in significant underestimation for such kernels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信