{"title":"提高效率和容错性的阵列雏形","authors":"R. Canham, A. Tyrrell","doi":"10.1109/EH.2003.1217678","DOIUrl":null,"url":null,"abstract":"Embryonic arrays are cellular based digital systems that make use of reconfigurable technologies to generate some features found in the embryonic development of biological entities. Typically a rectangular array of cells is implemented, each cell containing the complete description of the whole system. A coordinate system is used to select the functionality of each cell. This generates a quick method for reconfiguration, either to change functionality or to accommodate faults. This paper provides a brief review and critique of previous implementations before presenting a novel system. Unlike previous examples the array proposed only stores enough configuration data to accommodate a single fault or update. However, once this has occurred the system can reconfigure itself to be prepared for further faults or changes; this occurs in the background while the array still functions. The desired features of the array are provided but in a much more efficient manner. It also allows for a more fault tolerant implementation than current embryonic arrays.","PeriodicalId":134823,"journal":{"name":"NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"An embryonic array with improved efficiency and fault tolerance\",\"authors\":\"R. Canham, A. Tyrrell\",\"doi\":\"10.1109/EH.2003.1217678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embryonic arrays are cellular based digital systems that make use of reconfigurable technologies to generate some features found in the embryonic development of biological entities. Typically a rectangular array of cells is implemented, each cell containing the complete description of the whole system. A coordinate system is used to select the functionality of each cell. This generates a quick method for reconfiguration, either to change functionality or to accommodate faults. This paper provides a brief review and critique of previous implementations before presenting a novel system. Unlike previous examples the array proposed only stores enough configuration data to accommodate a single fault or update. However, once this has occurred the system can reconfigure itself to be prepared for further faults or changes; this occurs in the background while the array still functions. The desired features of the array are provided but in a much more efficient manner. It also allows for a more fault tolerant implementation than current embryonic arrays.\",\"PeriodicalId\":134823,\"journal\":{\"name\":\"NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EH.2003.1217678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2003.1217678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An embryonic array with improved efficiency and fault tolerance
Embryonic arrays are cellular based digital systems that make use of reconfigurable technologies to generate some features found in the embryonic development of biological entities. Typically a rectangular array of cells is implemented, each cell containing the complete description of the whole system. A coordinate system is used to select the functionality of each cell. This generates a quick method for reconfiguration, either to change functionality or to accommodate faults. This paper provides a brief review and critique of previous implementations before presenting a novel system. Unlike previous examples the array proposed only stores enough configuration data to accommodate a single fault or update. However, once this has occurred the system can reconfigure itself to be prepared for further faults or changes; this occurs in the background while the array still functions. The desired features of the array are provided but in a much more efficient manner. It also allows for a more fault tolerant implementation than current embryonic arrays.