基于SMOTE和随机森林的变压器故障诊断研究

Meiying Wu, Guan Wang, Hongshun Liu
{"title":"基于SMOTE和随机森林的变压器故障诊断研究","authors":"Meiying Wu, Guan Wang, Hongshun Liu","doi":"10.1109/CEECT55960.2022.10030548","DOIUrl":null,"url":null,"abstract":"The rapid development of artificial intelligence provides a new method with higher accuracy for transformer fault diagnosis, but the existing fault diagnosis models are not conducive to handling unbalanced data sets. In order to improve the accuracy of transformer fault diagnosis, a diagnosis method combining SMOTE and random forest is proposed. The SMOTE algorithm is used to expand the minority fault samples of transformer oil chromatography fault data set to balance the data quantity of each fault type. Then, the random forest classifier is used to identify the faults of the data that have not been expanded and the data that have been expanded by SMOTE respectively. The diagnosis results show that the accuracy of fault diagnosis can be significantly improved by using SMOTE to expand the unbalanced transformer oil chromatography fault data set before fault diagnosis. In addition, the results of several other fault diagnosis models are added to verify the above conclusion. At the same time, it is concluded that the random forest classifier is the model with the highest diagnostic accuracy among several fault diagnosis models, so it is an ideal choice for transformer fault diagnosis.","PeriodicalId":187017,"journal":{"name":"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Transformer Fault Diagnosis Based on SMOTE and Random Forest\",\"authors\":\"Meiying Wu, Guan Wang, Hongshun Liu\",\"doi\":\"10.1109/CEECT55960.2022.10030548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development of artificial intelligence provides a new method with higher accuracy for transformer fault diagnosis, but the existing fault diagnosis models are not conducive to handling unbalanced data sets. In order to improve the accuracy of transformer fault diagnosis, a diagnosis method combining SMOTE and random forest is proposed. The SMOTE algorithm is used to expand the minority fault samples of transformer oil chromatography fault data set to balance the data quantity of each fault type. Then, the random forest classifier is used to identify the faults of the data that have not been expanded and the data that have been expanded by SMOTE respectively. The diagnosis results show that the accuracy of fault diagnosis can be significantly improved by using SMOTE to expand the unbalanced transformer oil chromatography fault data set before fault diagnosis. In addition, the results of several other fault diagnosis models are added to verify the above conclusion. At the same time, it is concluded that the random forest classifier is the model with the highest diagnostic accuracy among several fault diagnosis models, so it is an ideal choice for transformer fault diagnosis.\",\"PeriodicalId\":187017,\"journal\":{\"name\":\"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEECT55960.2022.10030548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEECT55960.2022.10030548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能的快速发展为变压器故障诊断提供了一种精度更高的新方法,但现有的故障诊断模型不利于处理不平衡数据集。为了提高变压器故障诊断的准确率,提出了一种将SMOTE与随机森林相结合的变压器故障诊断方法。利用SMOTE算法对变压器油色谱故障数据集中的少数故障样本进行扩展,以平衡各故障类型的数据量。然后,使用随机森林分类器分别识别未扩展数据和经过SMOTE扩展的数据的故障。诊断结果表明,在故障诊断前利用SMOTE对不平衡变压器油色谱故障数据集进行扩展,可显著提高故障诊断的准确性。此外,还加入了其他几种故障诊断模型的结果来验证上述结论。同时,在多种故障诊断模型中,随机森林分类器的诊断准确率最高,是变压器故障诊断的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Transformer Fault Diagnosis Based on SMOTE and Random Forest
The rapid development of artificial intelligence provides a new method with higher accuracy for transformer fault diagnosis, but the existing fault diagnosis models are not conducive to handling unbalanced data sets. In order to improve the accuracy of transformer fault diagnosis, a diagnosis method combining SMOTE and random forest is proposed. The SMOTE algorithm is used to expand the minority fault samples of transformer oil chromatography fault data set to balance the data quantity of each fault type. Then, the random forest classifier is used to identify the faults of the data that have not been expanded and the data that have been expanded by SMOTE respectively. The diagnosis results show that the accuracy of fault diagnosis can be significantly improved by using SMOTE to expand the unbalanced transformer oil chromatography fault data set before fault diagnosis. In addition, the results of several other fault diagnosis models are added to verify the above conclusion. At the same time, it is concluded that the random forest classifier is the model with the highest diagnostic accuracy among several fault diagnosis models, so it is an ideal choice for transformer fault diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信