基于双长记忆模型的一天前风险价值估计:来自突尼斯股市的证据

Samir Mabrouk, C. Aloui
{"title":"基于双长记忆模型的一天前风险价值估计:来自突尼斯股市的证据","authors":"Samir Mabrouk, C. Aloui","doi":"10.1504/IJFSM.2010.032433","DOIUrl":null,"url":null,"abstract":"In this paper, we assess the one-day-ahead Value-at-Risk (VaR) performance for the Tunisian Stock Market (TSE). Using the ARFIMA-FIGARCH and ARFIMA-FIAPARCH models under three alternative innovation distributions: normal, Student and skewed Student, we show that the ARFIMA-FIAPARCH with skewed Student innovations outperforms the other models since it jointly considers the asymmetry, long-range memory and fat-tails in the TSE return behaviour. This model provides the better results for in and out-of-sample VaR estimations for both short and long trading positions.","PeriodicalId":174638,"journal":{"name":"International Journal of Financial Services Management","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"One-day-ahead value-at-risk estimations with dual long-memory models: evidence from the Tunisian stock market\",\"authors\":\"Samir Mabrouk, C. Aloui\",\"doi\":\"10.1504/IJFSM.2010.032433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we assess the one-day-ahead Value-at-Risk (VaR) performance for the Tunisian Stock Market (TSE). Using the ARFIMA-FIGARCH and ARFIMA-FIAPARCH models under three alternative innovation distributions: normal, Student and skewed Student, we show that the ARFIMA-FIAPARCH with skewed Student innovations outperforms the other models since it jointly considers the asymmetry, long-range memory and fat-tails in the TSE return behaviour. This model provides the better results for in and out-of-sample VaR estimations for both short and long trading positions.\",\"PeriodicalId\":174638,\"journal\":{\"name\":\"International Journal of Financial Services Management\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Financial Services Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJFSM.2010.032433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Financial Services Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJFSM.2010.032433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

在本文中,我们评估了突尼斯股票市场(TSE)的一天前风险价值(VaR)表现。利用ARFIMA-FIGARCH和ARFIMA-FIAPARCH模型在正态、学生和偏态学生三种替代创新分布下的表现,我们发现具有偏态学生创新的ARFIMA-FIAPARCH模型由于联合考虑了TSE收益行为的不对称性、长期性记忆和肥尾而优于其他模型。该模型为短期和长期交易头寸的样本内外VaR估计提供了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-day-ahead value-at-risk estimations with dual long-memory models: evidence from the Tunisian stock market
In this paper, we assess the one-day-ahead Value-at-Risk (VaR) performance for the Tunisian Stock Market (TSE). Using the ARFIMA-FIGARCH and ARFIMA-FIAPARCH models under three alternative innovation distributions: normal, Student and skewed Student, we show that the ARFIMA-FIAPARCH with skewed Student innovations outperforms the other models since it jointly considers the asymmetry, long-range memory and fat-tails in the TSE return behaviour. This model provides the better results for in and out-of-sample VaR estimations for both short and long trading positions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信