基于分子基闪光电池设计与优化的层次化仿真框架的开发

V. Georgiev
{"title":"基于分子基闪光电池设计与优化的层次化仿真框架的开发","authors":"V. Georgiev","doi":"10.1109/DRC.2018.8442234","DOIUrl":null,"url":null,"abstract":"The field of molecular electronics continues to spur interest in the quest for miniaturization and reduction of operational power of electron devices. Most of the systems described in the literature are based on organic molecules, such as benzene, ferrocene and fullerenes [1]. However, the use of inorganic molecules known as polyoxometalates (POMs) (see Fig. 1 and Fig. 2) could offer several important advantages over the conventional and organic based devices. The interest in POMs for flash cell applications stems from the fact that POMs are highly redox active molecules and that they can also be doped with electronically active heteroatoms [3]. They can undergo multiple reversible reductions/oxidations, which makes them attractive candidates for multi-bit storage in flash memory cells. Our recent work showed that POMs are more compatible with existing CMOS processes than organic molecules and they can replace the polysilicon floating gate in contemporary flash cell devices [2]. In this work, we discuss a further improvement and development of our simulation framework and models, e.g. Poisson distribution of the molecules in the oxide, introducing a various device geometry such as FDSOI and nanowires and improved simulation flow.","PeriodicalId":269641,"journal":{"name":"2018 76th Device Research Conference (DRC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of hierarchical simulation framework for design and optimization of molecular based flash cell\",\"authors\":\"V. Georgiev\",\"doi\":\"10.1109/DRC.2018.8442234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of molecular electronics continues to spur interest in the quest for miniaturization and reduction of operational power of electron devices. Most of the systems described in the literature are based on organic molecules, such as benzene, ferrocene and fullerenes [1]. However, the use of inorganic molecules known as polyoxometalates (POMs) (see Fig. 1 and Fig. 2) could offer several important advantages over the conventional and organic based devices. The interest in POMs for flash cell applications stems from the fact that POMs are highly redox active molecules and that they can also be doped with electronically active heteroatoms [3]. They can undergo multiple reversible reductions/oxidations, which makes them attractive candidates for multi-bit storage in flash memory cells. Our recent work showed that POMs are more compatible with existing CMOS processes than organic molecules and they can replace the polysilicon floating gate in contemporary flash cell devices [2]. In this work, we discuss a further improvement and development of our simulation framework and models, e.g. Poisson distribution of the molecules in the oxide, introducing a various device geometry such as FDSOI and nanowires and improved simulation flow.\",\"PeriodicalId\":269641,\"journal\":{\"name\":\"2018 76th Device Research Conference (DRC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 76th Device Research Conference (DRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2018.8442234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 76th Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2018.8442234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分子电子学领域继续激发人们对追求电子器件小型化和降低运行功率的兴趣。文献中描述的大多数体系都是基于有机分子,如苯、二茂铁和富勒烯[1]。然而,使用无机分子称为多金属氧酸盐(pom)(见图1和图2)可以提供几个重要的优势,超过传统和有机基础的设备。对POMs在闪存电池中的应用的兴趣源于这样一个事实,即POMs是高度氧化还原活性的分子,并且它们也可以掺杂电子活性杂原子[3]。它们可以经历多次可逆还原/氧化,这使它们成为闪存单元中多比特存储的有吸引力的候选者。我们最近的工作表明,与有机分子相比,POMs与现有的CMOS工艺更兼容,它们可以取代现代闪存电池器件中的多晶硅浮栅[2]。在这项工作中,我们讨论了我们的模拟框架和模型的进一步改进和发展,例如氧化物中分子的泊松分布,引入了各种器件几何结构,如FDSOI和纳米线,并改进了模拟流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of hierarchical simulation framework for design and optimization of molecular based flash cell
The field of molecular electronics continues to spur interest in the quest for miniaturization and reduction of operational power of electron devices. Most of the systems described in the literature are based on organic molecules, such as benzene, ferrocene and fullerenes [1]. However, the use of inorganic molecules known as polyoxometalates (POMs) (see Fig. 1 and Fig. 2) could offer several important advantages over the conventional and organic based devices. The interest in POMs for flash cell applications stems from the fact that POMs are highly redox active molecules and that they can also be doped with electronically active heteroatoms [3]. They can undergo multiple reversible reductions/oxidations, which makes them attractive candidates for multi-bit storage in flash memory cells. Our recent work showed that POMs are more compatible with existing CMOS processes than organic molecules and they can replace the polysilicon floating gate in contemporary flash cell devices [2]. In this work, we discuss a further improvement and development of our simulation framework and models, e.g. Poisson distribution of the molecules in the oxide, introducing a various device geometry such as FDSOI and nanowires and improved simulation flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信