台湾地区空气质量时空格局分析与预测

Ping-Wei Soh, Kai-Hsiang Chen, Jen-Wei Huang, Hone‐Jay Chu
{"title":"台湾地区空气质量时空格局分析与预测","authors":"Ping-Wei Soh, Kai-Hsiang Chen, Jen-Wei Huang, Hone‐Jay Chu","doi":"10.1109/UMEDIA.2017.8074094","DOIUrl":null,"url":null,"abstract":"This study explores the spatial-temporal patterns of particulate matter (PM) in Taiwan. Probability map of PM and daily patterns are discussed in this study. Data mining provides more detailed spatial-temporal information for PM variations and trends. The proposed model will show that data mining provides a relatively high goodness of fit and sufficient space-time explanatory power, particularly air pollution frequency and affect areas. In the proposed model, a method using Dynamic Time Warping is proposed to analyse temporal similarity between stations. The proposed model can eliminate global effect on a single station through the performance of multiple stations. The proposed model will further be used for prediction of PM2.5. The prediction results will discuss the spatial-temporal relations between stations. This study will investigate the distribution of PM and its cyclicality.","PeriodicalId":440018,"journal":{"name":"2017 10th International Conference on Ubi-media Computing and Workshops (Ubi-Media)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Spatial-Temporal pattern analysis and prediction of air quality in Taiwan\",\"authors\":\"Ping-Wei Soh, Kai-Hsiang Chen, Jen-Wei Huang, Hone‐Jay Chu\",\"doi\":\"10.1109/UMEDIA.2017.8074094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the spatial-temporal patterns of particulate matter (PM) in Taiwan. Probability map of PM and daily patterns are discussed in this study. Data mining provides more detailed spatial-temporal information for PM variations and trends. The proposed model will show that data mining provides a relatively high goodness of fit and sufficient space-time explanatory power, particularly air pollution frequency and affect areas. In the proposed model, a method using Dynamic Time Warping is proposed to analyse temporal similarity between stations. The proposed model can eliminate global effect on a single station through the performance of multiple stations. The proposed model will further be used for prediction of PM2.5. The prediction results will discuss the spatial-temporal relations between stations. This study will investigate the distribution of PM and its cyclicality.\",\"PeriodicalId\":440018,\"journal\":{\"name\":\"2017 10th International Conference on Ubi-media Computing and Workshops (Ubi-Media)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 10th International Conference on Ubi-media Computing and Workshops (Ubi-Media)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UMEDIA.2017.8074094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Conference on Ubi-media Computing and Workshops (Ubi-Media)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UMEDIA.2017.8074094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

摘要本研究探讨台湾地区大气中悬浮微粒(PM)的时空格局。本文讨论了PM的概率图和日常模式。数据挖掘为PM变化和趋势提供了更详细的时空信息。所提出的模型将表明,数据挖掘提供了较高的拟合优度和足够的时空解释力,特别是空气污染频率和影响区域。在该模型中,提出了一种利用动态时间扭曲分析台站间时间相似性的方法。该模型可以通过多站的性能消除对单站的全局影响。该模型将进一步用于PM2.5的预测。预测结果将讨论站间的时空关系。本研究将探讨PM的分布及其周期性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial-Temporal pattern analysis and prediction of air quality in Taiwan
This study explores the spatial-temporal patterns of particulate matter (PM) in Taiwan. Probability map of PM and daily patterns are discussed in this study. Data mining provides more detailed spatial-temporal information for PM variations and trends. The proposed model will show that data mining provides a relatively high goodness of fit and sufficient space-time explanatory power, particularly air pollution frequency and affect areas. In the proposed model, a method using Dynamic Time Warping is proposed to analyse temporal similarity between stations. The proposed model can eliminate global effect on a single station through the performance of multiple stations. The proposed model will further be used for prediction of PM2.5. The prediction results will discuss the spatial-temporal relations between stations. This study will investigate the distribution of PM and its cyclicality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信