离散柔性运动基元的泛化

Miha Deniša, A. Gams, A. Ude, T. Petrič
{"title":"离散柔性运动基元的泛化","authors":"Miha Deniša, A. Gams, A. Ude, T. Petrič","doi":"10.1109/ICAR.2015.7251512","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of achieving high robot compliance while maintaining low tracking error without the use of dynamical models. The proposed approach uses programing by demonstration to learn new task related compliant movement. The presented Compliant Movement Primitives are a combination of 1) position trajectories, gained through human demonstration and encoded as Dynamical Movement Primitives and 2) corresponding torque trajectories encoded as a linear combination of radial basis functions. A set of example Compliant Movement Primitives is used with statistical generalization in order to execute previously unexplored tasks inside the training space. The proposed control approach and generalization was evaluated with a discrete pick-and-place task on a Kuka LWR robot. The evaluation showed a major decrease in tracking error compared to a classic feedback approach and no significant rise in tracking error while using generalized Compliant Movement Primitives.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalization of discrete Compliant Movement Primitives\",\"authors\":\"Miha Deniša, A. Gams, A. Ude, T. Petrič\",\"doi\":\"10.1109/ICAR.2015.7251512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of achieving high robot compliance while maintaining low tracking error without the use of dynamical models. The proposed approach uses programing by demonstration to learn new task related compliant movement. The presented Compliant Movement Primitives are a combination of 1) position trajectories, gained through human demonstration and encoded as Dynamical Movement Primitives and 2) corresponding torque trajectories encoded as a linear combination of radial basis functions. A set of example Compliant Movement Primitives is used with statistical generalization in order to execute previously unexplored tasks inside the training space. The proposed control approach and generalization was evaluated with a discrete pick-and-place task on a Kuka LWR robot. The evaluation showed a major decrease in tracking error compared to a classic feedback approach and no significant rise in tracking error while using generalized Compliant Movement Primitives.\",\"PeriodicalId\":432004,\"journal\":{\"name\":\"2015 International Conference on Advanced Robotics (ICAR)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2015.7251512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2015.7251512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文解决了在不使用动态模型的情况下,在保持低跟踪误差的同时实现高机器人顺应性的问题。该方法采用示范编程的方法来学习与新任务相关的柔顺运动。所提出的柔顺运动原语是1)位置轨迹的组合,通过人类演示获得并编码为动态运动原语;2)相应的扭矩轨迹编码为径向基函数的线性组合。为了在训练空间内执行以前未探索的任务,一组示例顺应运动原语与统计泛化一起使用。通过库卡LWR机器人的离散拾取任务,对所提出的控制方法和泛化进行了评估。评估显示,与经典反馈方法相比,跟踪误差显著降低,而使用广义顺应运动原语时跟踪误差没有显著增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalization of discrete Compliant Movement Primitives
This paper addresses the problem of achieving high robot compliance while maintaining low tracking error without the use of dynamical models. The proposed approach uses programing by demonstration to learn new task related compliant movement. The presented Compliant Movement Primitives are a combination of 1) position trajectories, gained through human demonstration and encoded as Dynamical Movement Primitives and 2) corresponding torque trajectories encoded as a linear combination of radial basis functions. A set of example Compliant Movement Primitives is used with statistical generalization in order to execute previously unexplored tasks inside the training space. The proposed control approach and generalization was evaluated with a discrete pick-and-place task on a Kuka LWR robot. The evaluation showed a major decrease in tracking error compared to a classic feedback approach and no significant rise in tracking error while using generalized Compliant Movement Primitives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信