节能参数化FFT架构

Ren Chen, H. Le, V. Prasanna
{"title":"节能参数化FFT架构","authors":"Ren Chen, H. Le, V. Prasanna","doi":"10.1109/FPL.2013.6645545","DOIUrl":null,"url":null,"abstract":"In this paper, we revisit the classic Fast Fourier Transform (FFT) for energy efficient designs on FPGAs. A parameterized FFT architecture is proposed to identify the design trade-offs in achieving energy efficiency. We first perform design space exploration by varying the algorithm mapping parameters, such as the degree of vertical and horizontal parallelism, that characterize decomposition based FFT algorithms. Then we explore an energy efficient design by empirical selection on the values of the chosen architecture parameters, including the type of memory elements, the type of interconnection network and the number of pipeline stages. The trade offs between energy, area, and time are analyzed using two performance metrics: the energy efficiency (defined as the number of operations per Joule) and the Energy×Area×Time (EAT) composite metric. From the experimental results, a design space is generated to demonstrate the effect of these parameters on the various performance metrics. For N-point FFT (16 ≤ N ≤ 1024), our designs achieve up to 28% and 38% improvement in the energy efficiency and EAT, respectively, compared with a state-of-the-art design.","PeriodicalId":200435,"journal":{"name":"2013 23rd International Conference on Field programmable Logic and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Energy efficient parameterized FFT architecture\",\"authors\":\"Ren Chen, H. Le, V. Prasanna\",\"doi\":\"10.1109/FPL.2013.6645545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we revisit the classic Fast Fourier Transform (FFT) for energy efficient designs on FPGAs. A parameterized FFT architecture is proposed to identify the design trade-offs in achieving energy efficiency. We first perform design space exploration by varying the algorithm mapping parameters, such as the degree of vertical and horizontal parallelism, that characterize decomposition based FFT algorithms. Then we explore an energy efficient design by empirical selection on the values of the chosen architecture parameters, including the type of memory elements, the type of interconnection network and the number of pipeline stages. The trade offs between energy, area, and time are analyzed using two performance metrics: the energy efficiency (defined as the number of operations per Joule) and the Energy×Area×Time (EAT) composite metric. From the experimental results, a design space is generated to demonstrate the effect of these parameters on the various performance metrics. For N-point FFT (16 ≤ N ≤ 1024), our designs achieve up to 28% and 38% improvement in the energy efficiency and EAT, respectively, compared with a state-of-the-art design.\",\"PeriodicalId\":200435,\"journal\":{\"name\":\"2013 23rd International Conference on Field programmable Logic and Applications\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 23rd International Conference on Field programmable Logic and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL.2013.6645545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 23rd International Conference on Field programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2013.6645545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

在本文中,我们回顾了经典的快速傅立叶变换(FFT)在fpga上的节能设计。提出了一种参数化FFT体系结构,以确定实现能源效率的设计权衡。我们首先通过改变算法映射参数(如垂直和水平并行度)来进行设计空间探索,这些参数是基于分解的FFT算法的特征。然后,我们通过经验选择所选架构参数的值来探索节能设计,包括存储元件的类型,互连网络的类型和管道级的数量。使用两个性能指标来分析能量、面积和时间之间的权衡:能源效率(定义为每焦耳的操作次数)和Energy×Area×Time (EAT)复合指标。根据实验结果,生成一个设计空间来演示这些参数对各种性能指标的影响。对于N点FFT(16≤N≤1024),与最先进的设计相比,我们的设计在能源效率和EAT方面分别提高了28%和38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy efficient parameterized FFT architecture
In this paper, we revisit the classic Fast Fourier Transform (FFT) for energy efficient designs on FPGAs. A parameterized FFT architecture is proposed to identify the design trade-offs in achieving energy efficiency. We first perform design space exploration by varying the algorithm mapping parameters, such as the degree of vertical and horizontal parallelism, that characterize decomposition based FFT algorithms. Then we explore an energy efficient design by empirical selection on the values of the chosen architecture parameters, including the type of memory elements, the type of interconnection network and the number of pipeline stages. The trade offs between energy, area, and time are analyzed using two performance metrics: the energy efficiency (defined as the number of operations per Joule) and the Energy×Area×Time (EAT) composite metric. From the experimental results, a design space is generated to demonstrate the effect of these parameters on the various performance metrics. For N-point FFT (16 ≤ N ≤ 1024), our designs achieve up to 28% and 38% improvement in the energy efficiency and EAT, respectively, compared with a state-of-the-art design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信