从盲目的确定到知情的不确定

TAU '02 Pub Date : 2002-12-02 DOI:10.1145/589411.589419
K. Keutzer, M. Orshansky
{"title":"从盲目的确定到知情的不确定","authors":"K. Keutzer, M. Orshansky","doi":"10.1145/589411.589419","DOIUrl":null,"url":null,"abstract":"The accuracy, computational efficiency, and reliability of static timing analysis have made it the workhorse for verifying the timing of synchronous digital integrated circuits for more than a decade. In this paper we charge that the traditional deterministic approach to analyzing the timing of circuits is significantly undermining its accuracy and may even challenge its reliability. We argue that computation of the static timing of a circuit requires a dramatic rethinking in order to continue serving its role as an enabler of high-performance designs. More fundamentally we believe that for circuits to be reliably designed the underlying probabilistic effects must be brought to the forefront of design and no longer hidden under conservative approximations. The reasons that justify such a radical transition are presented together with directions for solutions.","PeriodicalId":338381,"journal":{"name":"TAU '02","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"From blind certainty to informed uncertainty\",\"authors\":\"K. Keutzer, M. Orshansky\",\"doi\":\"10.1145/589411.589419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy, computational efficiency, and reliability of static timing analysis have made it the workhorse for verifying the timing of synchronous digital integrated circuits for more than a decade. In this paper we charge that the traditional deterministic approach to analyzing the timing of circuits is significantly undermining its accuracy and may even challenge its reliability. We argue that computation of the static timing of a circuit requires a dramatic rethinking in order to continue serving its role as an enabler of high-performance designs. More fundamentally we believe that for circuits to be reliably designed the underlying probabilistic effects must be brought to the forefront of design and no longer hidden under conservative approximations. The reasons that justify such a radical transition are presented together with directions for solutions.\",\"PeriodicalId\":338381,\"journal\":{\"name\":\"TAU '02\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TAU '02\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/589411.589419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TAU '02","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/589411.589419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

十多年来,静态时序分析的准确性、计算效率和可靠性使其成为验证同步数字集成电路时序的主要方法。在本文中,我们指控传统的确定性方法来分析电路的时间是显着破坏其准确性,甚至可能挑战其可靠性。我们认为,电路的静态时序计算需要戏剧性的重新思考,以继续发挥其作为高性能设计的推动者的作用。更根本的是,我们相信,为了可靠地设计电路,潜在的概率效应必须被带到设计的前沿,而不再隐藏在保守的近似中。提出了进行这种彻底转变的理由以及解决办法的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From blind certainty to informed uncertainty
The accuracy, computational efficiency, and reliability of static timing analysis have made it the workhorse for verifying the timing of synchronous digital integrated circuits for more than a decade. In this paper we charge that the traditional deterministic approach to analyzing the timing of circuits is significantly undermining its accuracy and may even challenge its reliability. We argue that computation of the static timing of a circuit requires a dramatic rethinking in order to continue serving its role as an enabler of high-performance designs. More fundamentally we believe that for circuits to be reliably designed the underlying probabilistic effects must be brought to the forefront of design and no longer hidden under conservative approximations. The reasons that justify such a radical transition are presented together with directions for solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信