{"title":"非易失性存储器对物理探测的安全性评估","authors":"L. K. Biswas, M. Khan, L. Lavdas, N. Asadizanjani","doi":"10.31399/asm.edfa.2022-4.p022","DOIUrl":null,"url":null,"abstract":"\n This article describes how physical attacks can be launched on different types of nonvolatile memory (NVM) cells using failure analysis tools. It explains how the bit information stored inside these devices is susceptible to read-out and fault injection attacks and defines vulnerability parameters to help quantify risks associated with different modalities of attack. It also presents an in-depth security analysis of emerging NVM technologies and discusses potential countermeasures.","PeriodicalId":431761,"journal":{"name":"EDFA Technical Articles","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Security Assessment of Nonvolatile Memory Against Physical Probing\",\"authors\":\"L. K. Biswas, M. Khan, L. Lavdas, N. Asadizanjani\",\"doi\":\"10.31399/asm.edfa.2022-4.p022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article describes how physical attacks can be launched on different types of nonvolatile memory (NVM) cells using failure analysis tools. It explains how the bit information stored inside these devices is susceptible to read-out and fault injection attacks and defines vulnerability parameters to help quantify risks associated with different modalities of attack. It also presents an in-depth security analysis of emerging NVM technologies and discusses potential countermeasures.\",\"PeriodicalId\":431761,\"journal\":{\"name\":\"EDFA Technical Articles\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EDFA Technical Articles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.edfa.2022-4.p022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EDFA Technical Articles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.edfa.2022-4.p022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Security Assessment of Nonvolatile Memory Against Physical Probing
This article describes how physical attacks can be launched on different types of nonvolatile memory (NVM) cells using failure analysis tools. It explains how the bit information stored inside these devices is susceptible to read-out and fault injection attacks and defines vulnerability parameters to help quantify risks associated with different modalities of attack. It also presents an in-depth security analysis of emerging NVM technologies and discusses potential countermeasures.