{"title":"利用碘斯坦楠烷实现拓扑绝缘体场效应晶体管","authors":"W. Vandenberghe, M. Fischetti","doi":"10.1109/IEDM.2014.7047162","DOIUrl":null,"url":null,"abstract":"Monolayer hexagonal tin (stannanane) is a topological insulator and upon functionalization with halogens, such as iodine, a gap exceeding 300 meV is obtained. In a stannanane ribbon the topologically protected edge states lead to very high conductivities and mobilities; moreover the conductivity is strongly dependent on the Fermi level. We show how this property can be exploited to make a topological-insulator field-effect transistor (TIFET). We simulate the input and output characteristics of the TIFET using a drift-diffusion-like approximation and obtain promising transistor characteristics with a high on-current which exceeds the off-current by over three orders of magnitude.","PeriodicalId":309325,"journal":{"name":"2014 IEEE International Electron Devices Meeting","volume":"924 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Realizing a topological-insulator field-effect transistor using iodostannanane\",\"authors\":\"W. Vandenberghe, M. Fischetti\",\"doi\":\"10.1109/IEDM.2014.7047162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monolayer hexagonal tin (stannanane) is a topological insulator and upon functionalization with halogens, such as iodine, a gap exceeding 300 meV is obtained. In a stannanane ribbon the topologically protected edge states lead to very high conductivities and mobilities; moreover the conductivity is strongly dependent on the Fermi level. We show how this property can be exploited to make a topological-insulator field-effect transistor (TIFET). We simulate the input and output characteristics of the TIFET using a drift-diffusion-like approximation and obtain promising transistor characteristics with a high on-current which exceeds the off-current by over three orders of magnitude.\",\"PeriodicalId\":309325,\"journal\":{\"name\":\"2014 IEEE International Electron Devices Meeting\",\"volume\":\"924 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Electron Devices Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2014.7047162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2014.7047162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Realizing a topological-insulator field-effect transistor using iodostannanane
Monolayer hexagonal tin (stannanane) is a topological insulator and upon functionalization with halogens, such as iodine, a gap exceeding 300 meV is obtained. In a stannanane ribbon the topologically protected edge states lead to very high conductivities and mobilities; moreover the conductivity is strongly dependent on the Fermi level. We show how this property can be exploited to make a topological-insulator field-effect transistor (TIFET). We simulate the input and output characteristics of the TIFET using a drift-diffusion-like approximation and obtain promising transistor characteristics with a high on-current which exceeds the off-current by over three orders of magnitude.