dnn加速器3d - ic的架构、数据流和物理设计含义

J. Joseph, A. Samajdar, Lingjun Zhu, R. Leupers, Syun-Kun Lim, Thilo Pionteck, T. Krishna
{"title":"dnn加速器3d - ic的架构、数据流和物理设计含义","authors":"J. Joseph, A. Samajdar, Lingjun Zhu, R. Leupers, Syun-Kun Lim, Thilo Pionteck, T. Krishna","doi":"10.1109/ISQED51717.2021.9424349","DOIUrl":null,"url":null,"abstract":"The everlasting demand for higher computing power for deep neural networks (DNNs) drives the development of parallel computing architectures. 3D integration, in which chips are integrated and connected vertically, can further increase performance because it introduces another level of spatial parallelism. Therefore, we analyze dataflows, performance, area, power and temperature of such 3D-DNN-accelerators. Monolithic and TSV-based stacked 3D-ICs are compared against 2D-ICs. We identify workload properties and architectural parameters for efficient 3D-ICs and achieve up to 9. 14x speedup of 3Dvs.2D. We discuss area-performance trade-offs. We demonstrate applicability as the 3D-IC draws similar power as 2D-ICs and is not thermal limited.","PeriodicalId":123018,"journal":{"name":"2021 22nd International Symposium on Quality Electronic Design (ISQED)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Architecture, Dataflow and Physical Design Implications of 3D-ICs for DNN-Accelerators\",\"authors\":\"J. Joseph, A. Samajdar, Lingjun Zhu, R. Leupers, Syun-Kun Lim, Thilo Pionteck, T. Krishna\",\"doi\":\"10.1109/ISQED51717.2021.9424349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The everlasting demand for higher computing power for deep neural networks (DNNs) drives the development of parallel computing architectures. 3D integration, in which chips are integrated and connected vertically, can further increase performance because it introduces another level of spatial parallelism. Therefore, we analyze dataflows, performance, area, power and temperature of such 3D-DNN-accelerators. Monolithic and TSV-based stacked 3D-ICs are compared against 2D-ICs. We identify workload properties and architectural parameters for efficient 3D-ICs and achieve up to 9. 14x speedup of 3Dvs.2D. We discuss area-performance trade-offs. We demonstrate applicability as the 3D-IC draws similar power as 2D-ICs and is not thermal limited.\",\"PeriodicalId\":123018,\"journal\":{\"name\":\"2021 22nd International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 22nd International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED51717.2021.9424349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED51717.2021.9424349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

深度神经网络(dnn)对更高计算能力的持续需求推动了并行计算架构的发展。3D集成,即芯片垂直集成和连接,可以进一步提高性能,因为它引入了另一个层次的空间并行性。因此,我们分析了这种3d - dnn加速器的数据流、性能、面积、功率和温度。将单片和基于tsv的堆叠3d - ic与2d - ic进行比较。我们确定了高效3d - ic的工作负载属性和架构参数,并实现了多达9个。3d . 2d的14倍加速。我们讨论区域性能权衡。我们证明了3D-IC的适用性,因为3D-IC的功耗与2d - ic相似,并且不受热限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Architecture, Dataflow and Physical Design Implications of 3D-ICs for DNN-Accelerators
The everlasting demand for higher computing power for deep neural networks (DNNs) drives the development of parallel computing architectures. 3D integration, in which chips are integrated and connected vertically, can further increase performance because it introduces another level of spatial parallelism. Therefore, we analyze dataflows, performance, area, power and temperature of such 3D-DNN-accelerators. Monolithic and TSV-based stacked 3D-ICs are compared against 2D-ICs. We identify workload properties and architectural parameters for efficient 3D-ICs and achieve up to 9. 14x speedup of 3Dvs.2D. We discuss area-performance trade-offs. We demonstrate applicability as the 3D-IC draws similar power as 2D-ICs and is not thermal limited.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信