R. Kamibaba, Kazuya Konishi, Y. Fukada, A. Narazaki, M. Tarutani
{"title":"下一代650V CSTBTTM采用先进的薄晶片技术制造,具有改进的SOA","authors":"R. Kamibaba, Kazuya Konishi, Y. Fukada, A. Narazaki, M. Tarutani","doi":"10.1109/ISPSD.2015.7123381","DOIUrl":null,"url":null,"abstract":"Using an advanced thin wafer technology, we have successfully fabricated the next generation 650V class IGBT with an improved SOA and maintaining the narrow distribution of the electrical characteristics for industrial applications. The applied techniques were the finer pattern transistor cell, the thin wafer process and the optimized back side doping concentration profiles. With the well organized back-side wafer process, the practically large chip has achieved without any sacrifice of the production yield. As a results, VCEsat-Eoff trade-off relationship and an Energy of Short Circuit by active Area (ESC/A) are improved in comparison with the conventional Punch Through (PT) structure.","PeriodicalId":289196,"journal":{"name":"2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Next generation 650V CSTBTTM with improved SOA fabricated by an advanced thin wafer technology\",\"authors\":\"R. Kamibaba, Kazuya Konishi, Y. Fukada, A. Narazaki, M. Tarutani\",\"doi\":\"10.1109/ISPSD.2015.7123381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using an advanced thin wafer technology, we have successfully fabricated the next generation 650V class IGBT with an improved SOA and maintaining the narrow distribution of the electrical characteristics for industrial applications. The applied techniques were the finer pattern transistor cell, the thin wafer process and the optimized back side doping concentration profiles. With the well organized back-side wafer process, the practically large chip has achieved without any sacrifice of the production yield. As a results, VCEsat-Eoff trade-off relationship and an Energy of Short Circuit by active Area (ESC/A) are improved in comparison with the conventional Punch Through (PT) structure.\",\"PeriodicalId\":289196,\"journal\":{\"name\":\"2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPSD.2015.7123381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2015.7123381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Next generation 650V CSTBTTM with improved SOA fabricated by an advanced thin wafer technology
Using an advanced thin wafer technology, we have successfully fabricated the next generation 650V class IGBT with an improved SOA and maintaining the narrow distribution of the electrical characteristics for industrial applications. The applied techniques were the finer pattern transistor cell, the thin wafer process and the optimized back side doping concentration profiles. With the well organized back-side wafer process, the practically large chip has achieved without any sacrifice of the production yield. As a results, VCEsat-Eoff trade-off relationship and an Energy of Short Circuit by active Area (ESC/A) are improved in comparison with the conventional Punch Through (PT) structure.