进位选择加法器故障的在线检测

B. K. Kumar, P. Lala
{"title":"进位选择加法器故障的在线检测","authors":"B. K. Kumar, P. Lala","doi":"10.1109/TEST.2003.1271077","DOIUrl":null,"url":null,"abstract":"Paper 35.3 91 2 from the previous stage. If the actual carry-in is ‘0’ then the sum multiplexed from the first unit is selected, alternatively if the carry-in is. ‘ 1 ’ then the sum from the second unit is selected. A carry select adder of arbitrary size can be deigned by cascading together an appropriate number of such 4-bit adders. This paper concentrates on designing a scheme for implementing self-checking carry-select adders. Several techniques have been proposed in recent years for designing self-checking adders [2][3][4]. Coding techniques such as Berger code, Residue code and arithmetic codes have been proposed for checking the hnctionality of the arithmetic units. a3 b3 a2 b2 al b l QO bO","PeriodicalId":236182,"journal":{"name":"International Test Conference, 2003. Proceedings. ITC 2003.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"On-line detection of faults in carry-select adders\",\"authors\":\"B. K. Kumar, P. Lala\",\"doi\":\"10.1109/TEST.2003.1271077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Paper 35.3 91 2 from the previous stage. If the actual carry-in is ‘0’ then the sum multiplexed from the first unit is selected, alternatively if the carry-in is. ‘ 1 ’ then the sum from the second unit is selected. A carry select adder of arbitrary size can be deigned by cascading together an appropriate number of such 4-bit adders. This paper concentrates on designing a scheme for implementing self-checking carry-select adders. Several techniques have been proposed in recent years for designing self-checking adders [2][3][4]. Coding techniques such as Berger code, Residue code and arithmetic codes have been proposed for checking the hnctionality of the arithmetic units. a3 b3 a2 b2 al b l QO bO\",\"PeriodicalId\":236182,\"journal\":{\"name\":\"International Test Conference, 2003. Proceedings. ITC 2003.\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Test Conference, 2003. Proceedings. ITC 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEST.2003.1271077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Test Conference, 2003. Proceedings. ITC 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2003.1271077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

上一阶段的论文35.3 91 2。如果实际随身携带的是' 0 ',那么从第一个单位复用的和被选中,或者如果随身携带的是。' 1 '则选择第二个单元的和。任意大小的进位选择加法器可以通过级联适当数量的这种4位加法器来设计。设计了一种实现自检进位选择加法器的方案。近年来提出了几种设计自检加法器[2][3][4]的技术。编码技术,如伯杰码,剩余码和算术码已提出检查算术单元的功能。a3b3a2b2alb1qobo
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-line detection of faults in carry-select adders
Paper 35.3 91 2 from the previous stage. If the actual carry-in is ‘0’ then the sum multiplexed from the first unit is selected, alternatively if the carry-in is. ‘ 1 ’ then the sum from the second unit is selected. A carry select adder of arbitrary size can be deigned by cascading together an appropriate number of such 4-bit adders. This paper concentrates on designing a scheme for implementing self-checking carry-select adders. Several techniques have been proposed in recent years for designing self-checking adders [2][3][4]. Coding techniques such as Berger code, Residue code and arithmetic codes have been proposed for checking the hnctionality of the arithmetic units. a3 b3 a2 b2 al b l QO bO
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信