{"title":"多目标问题状态-行为规则的分层模块化强化学习方法及知识获取","authors":"T. Ichimura, Daisuke Igaue","doi":"10.1109/IWCIA.2013.6624799","DOIUrl":null,"url":null,"abstract":"Hierarchical Modular Reinforcement Learning (HMRL), consists of 2 layered learning where Profit Sharing works to plan a prey position in the higher layer and Q-learning method trains the state-actions to the target in the lower layer. In this paper, we expanded HMRL to multi-target problem to take the distance between targets to the consideration. The function, called `AT field', can estimate the interests for an agent according to the distance between 2 agents and the advantage/disadvantage of the other agent. Moreover, the knowledge related to state-action rules is extracted by C4.5. The action under the situation is decided by using the acquired knowledge. To verify the effectiveness of proposed method, some experimental results are reported.","PeriodicalId":257474,"journal":{"name":"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hierarchical modular reinforcement learning method and knowledge acquisition of state-action rule for multi-target problem\",\"authors\":\"T. Ichimura, Daisuke Igaue\",\"doi\":\"10.1109/IWCIA.2013.6624799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hierarchical Modular Reinforcement Learning (HMRL), consists of 2 layered learning where Profit Sharing works to plan a prey position in the higher layer and Q-learning method trains the state-actions to the target in the lower layer. In this paper, we expanded HMRL to multi-target problem to take the distance between targets to the consideration. The function, called `AT field', can estimate the interests for an agent according to the distance between 2 agents and the advantage/disadvantage of the other agent. Moreover, the knowledge related to state-action rules is extracted by C4.5. The action under the situation is decided by using the acquired knowledge. To verify the effectiveness of proposed method, some experimental results are reported.\",\"PeriodicalId\":257474,\"journal\":{\"name\":\"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCIA.2013.6624799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2013.6624799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hierarchical modular reinforcement learning method and knowledge acquisition of state-action rule for multi-target problem
Hierarchical Modular Reinforcement Learning (HMRL), consists of 2 layered learning where Profit Sharing works to plan a prey position in the higher layer and Q-learning method trains the state-actions to the target in the lower layer. In this paper, we expanded HMRL to multi-target problem to take the distance between targets to the consideration. The function, called `AT field', can estimate the interests for an agent according to the distance between 2 agents and the advantage/disadvantage of the other agent. Moreover, the knowledge related to state-action rules is extracted by C4.5. The action under the situation is decided by using the acquired knowledge. To verify the effectiveness of proposed method, some experimental results are reported.