{"title":"在彼尔姆地区使用自动天气分类对数值天气预报进行条件验证","authors":"S. Kostarev, Igor N. Rusin","doi":"10.17072/2079-7877-2021-1-68-80","DOIUrl":null,"url":null,"abstract":"The article discusses the possibility of verification of short-term 2-meter air temperature forecasts with the Global Forecast System and Global Environment Multiscale numerical weather prediction models depending on the observed synoptic type (a case study of the Perm region for the period 2018–2019). As part of the study, we have developed a system of automated determination of synoptic type based on a two-stage procedure, including decomposition of mean sea level pressure fields via principal component analysis and the subsequent clustering of decomposition coefficients using K-means. It has been established that GFS forecasts are more dependent on synoptic type in summer than in winter. The decline of forecast quality, expressed in systematic underestimation of forecast temperature by 0.6°–1.2°, is noted for synoptic types associated with warm air advection.: In contrast, GEM forecasts tend to lack accuracy in winter. A sharp decrease in forecast quality has been discovered in the central area of anticyclone at night, when the forecast accuracy drops to 44%. The obtained results could be useful in operational forecasting and model postprocessing.","PeriodicalId":345845,"journal":{"name":"Географический вестник = Geographical bulletin","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE USE OF AUTOMATED SYNOPTIC TYPING FOR CONDITIONAL VERIFICATION OF NUMERICAL WEATHER PREDICTION IN THE PERM REGION\",\"authors\":\"S. Kostarev, Igor N. Rusin\",\"doi\":\"10.17072/2079-7877-2021-1-68-80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article discusses the possibility of verification of short-term 2-meter air temperature forecasts with the Global Forecast System and Global Environment Multiscale numerical weather prediction models depending on the observed synoptic type (a case study of the Perm region for the period 2018–2019). As part of the study, we have developed a system of automated determination of synoptic type based on a two-stage procedure, including decomposition of mean sea level pressure fields via principal component analysis and the subsequent clustering of decomposition coefficients using K-means. It has been established that GFS forecasts are more dependent on synoptic type in summer than in winter. The decline of forecast quality, expressed in systematic underestimation of forecast temperature by 0.6°–1.2°, is noted for synoptic types associated with warm air advection.: In contrast, GEM forecasts tend to lack accuracy in winter. A sharp decrease in forecast quality has been discovered in the central area of anticyclone at night, when the forecast accuracy drops to 44%. The obtained results could be useful in operational forecasting and model postprocessing.\",\"PeriodicalId\":345845,\"journal\":{\"name\":\"Географический вестник = Geographical bulletin\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Географический вестник = Geographical bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17072/2079-7877-2021-1-68-80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Географический вестник = Geographical bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17072/2079-7877-2021-1-68-80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THE USE OF AUTOMATED SYNOPTIC TYPING FOR CONDITIONAL VERIFICATION OF NUMERICAL WEATHER PREDICTION IN THE PERM REGION
The article discusses the possibility of verification of short-term 2-meter air temperature forecasts with the Global Forecast System and Global Environment Multiscale numerical weather prediction models depending on the observed synoptic type (a case study of the Perm region for the period 2018–2019). As part of the study, we have developed a system of automated determination of synoptic type based on a two-stage procedure, including decomposition of mean sea level pressure fields via principal component analysis and the subsequent clustering of decomposition coefficients using K-means. It has been established that GFS forecasts are more dependent on synoptic type in summer than in winter. The decline of forecast quality, expressed in systematic underestimation of forecast temperature by 0.6°–1.2°, is noted for synoptic types associated with warm air advection.: In contrast, GEM forecasts tend to lack accuracy in winter. A sharp decrease in forecast quality has been discovered in the central area of anticyclone at night, when the forecast accuracy drops to 44%. The obtained results could be useful in operational forecasting and model postprocessing.