用布尔方法解读癌症生物学

Subarna Sinha, D. Dill
{"title":"用布尔方法解读癌症生物学","authors":"Subarna Sinha, D. Dill","doi":"10.1109/HLDVT.2016.7748269","DOIUrl":null,"url":null,"abstract":"Boolean implications (if-then rules) provide a conceptually simple, uniform and highly scalable way to find associations between pairs of random variables. In this paper, we describe how Boolean implications can be derived from large, heterogeneous cancer data sets. We demonstrate two applications of Boolean implications to discover new actionable insights in cancer biology.","PeriodicalId":166427,"journal":{"name":"2016 IEEE International High Level Design Validation and Test Workshop (HLDVT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering cancer biology using boolean methods\",\"authors\":\"Subarna Sinha, D. Dill\",\"doi\":\"10.1109/HLDVT.2016.7748269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Boolean implications (if-then rules) provide a conceptually simple, uniform and highly scalable way to find associations between pairs of random variables. In this paper, we describe how Boolean implications can be derived from large, heterogeneous cancer data sets. We demonstrate two applications of Boolean implications to discover new actionable insights in cancer biology.\",\"PeriodicalId\":166427,\"journal\":{\"name\":\"2016 IEEE International High Level Design Validation and Test Workshop (HLDVT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International High Level Design Validation and Test Workshop (HLDVT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HLDVT.2016.7748269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International High Level Design Validation and Test Workshop (HLDVT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HLDVT.2016.7748269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

布尔暗示(if-then规则)提供了一种概念简单、统一且高度可扩展的方法来查找随机变量对之间的关联。在本文中,我们描述了如何从大型异构癌症数据集中推导布尔含义。我们展示了布尔蕴涵的两个应用,以发现癌症生物学中新的可操作的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deciphering cancer biology using boolean methods
Boolean implications (if-then rules) provide a conceptually simple, uniform and highly scalable way to find associations between pairs of random variables. In this paper, we describe how Boolean implications can be derived from large, heterogeneous cancer data sets. We demonstrate two applications of Boolean implications to discover new actionable insights in cancer biology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信