基于反向传播(BPN)和广义回归神经网络(GRNN)的线材电火花加工建模

P. V. Reddy, C. H. R. V. Kumar, K. Reddy
{"title":"基于反向传播(BPN)和广义回归神经网络(GRNN)的线材电火花加工建模","authors":"P. V. Reddy, C. H. R. V. Kumar, K. Reddy","doi":"10.1109/FAME.2010.5714854","DOIUrl":null,"url":null,"abstract":"In this paper the Artificial Neural Network (ANN) model is developed to predict the surface roughness in Wire Electrical Discharge Machining (WEDM) of Cr-Mo-V alloyed special steel, which is used in automobile industry. The neural network Models strained with experimental results conducted using L16 orthogonal array by considering the input parameters such as pulse duration, open voltage, wire speed and dielectric flushing pressure at four different levels. The mathematical relation between the work piece surface roughness and WEDM cutting parameters is also established by multiple regression analysis method. Predicted values of surface roughness by Back-propagation (BPN), General regression neural networks (GRNN) using MATLAB NN tool and regression analysis, were compared with the experimental values and their closeness with the experimental values. The predicted values in BPN network with two hidden layers are very close to the experimental results than GRNN network and multiful regression values.","PeriodicalId":123922,"journal":{"name":"Frontiers in Automobile and Mechanical Engineering -2010","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Modeling of wire EDM process using back propagation (BPN) and General Regression Neural Networks (GRNN)\",\"authors\":\"P. V. Reddy, C. H. R. V. Kumar, K. Reddy\",\"doi\":\"10.1109/FAME.2010.5714854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the Artificial Neural Network (ANN) model is developed to predict the surface roughness in Wire Electrical Discharge Machining (WEDM) of Cr-Mo-V alloyed special steel, which is used in automobile industry. The neural network Models strained with experimental results conducted using L16 orthogonal array by considering the input parameters such as pulse duration, open voltage, wire speed and dielectric flushing pressure at four different levels. The mathematical relation between the work piece surface roughness and WEDM cutting parameters is also established by multiple regression analysis method. Predicted values of surface roughness by Back-propagation (BPN), General regression neural networks (GRNN) using MATLAB NN tool and regression analysis, were compared with the experimental values and their closeness with the experimental values. The predicted values in BPN network with two hidden layers are very close to the experimental results than GRNN network and multiful regression values.\",\"PeriodicalId\":123922,\"journal\":{\"name\":\"Frontiers in Automobile and Mechanical Engineering -2010\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Automobile and Mechanical Engineering -2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FAME.2010.5714854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Automobile and Mechanical Engineering -2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAME.2010.5714854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文建立了汽车用Cr-Mo-V合金特殊钢线切割加工表面粗糙度预测的人工神经网络模型。考虑脉冲持续时间、开路电压、导线速度、介质冲刷压力等4个不同水平的输入参数,采用L16正交阵列对实验结果进行应变。采用多元回归分析方法建立了工件表面粗糙度与线切割加工参数之间的数学关系。利用MATLAB神经网络工具和回归分析,比较了反向传播(BPN)、广义回归神经网络(GRNN)预测的表面粗糙度值与实验值的接近性。两隐层bp神经网络的预测值比GRNN网络和多重回归值的预测值更接近实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling of wire EDM process using back propagation (BPN) and General Regression Neural Networks (GRNN)
In this paper the Artificial Neural Network (ANN) model is developed to predict the surface roughness in Wire Electrical Discharge Machining (WEDM) of Cr-Mo-V alloyed special steel, which is used in automobile industry. The neural network Models strained with experimental results conducted using L16 orthogonal array by considering the input parameters such as pulse duration, open voltage, wire speed and dielectric flushing pressure at four different levels. The mathematical relation between the work piece surface roughness and WEDM cutting parameters is also established by multiple regression analysis method. Predicted values of surface roughness by Back-propagation (BPN), General regression neural networks (GRNN) using MATLAB NN tool and regression analysis, were compared with the experimental values and their closeness with the experimental values. The predicted values in BPN network with two hidden layers are very close to the experimental results than GRNN network and multiful regression values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信