FTMRate: IEEE 802.11网络中基于冲突免疫距离的数据速率选择

Wojciech Ciezobka, Maksymilian Wojnar, Katarzyna Kosek-Szott, S. Szott, Krzysztof Rusek
{"title":"FTMRate: IEEE 802.11网络中基于冲突免疫距离的数据速率选择","authors":"Wojciech Ciezobka, Maksymilian Wojnar, Katarzyna Kosek-Szott, S. Szott, Krzysztof Rusek","doi":"10.1109/WoWMoM57956.2023.00039","DOIUrl":null,"url":null,"abstract":"Data rate selection algorithms for Wi-Fi devices are an important area of research because they directly impact performance. Most of the proposals are based on measuring the transmission success probability for a given data rate. In dense scenarios, however, this probing approach will fail because frame collisions are misinterpreted as erroneous data rate selection. We propose FTMRate which uses the fine timing measurement (FTM) feature, recently introduced in IEEE 802.11. FTM allows stations to measure their distance from the AP. We argue that knowledge of the distance from the receiver can be useful in determining which data rate to use. We apply statistical learning (a form of machine learning) to estimate the distance based on measurements, estimate channel quality from the distance, and select data rates based on channel quality. We evaluate three distinct estimation approaches: exponential smoothing, Kalman filter, and particle filter. We present a performance evaluation of the three variants of FTMRate and show, in several dense and mobile (though line-of-sight only) scenarios, that it can outperform two benchmarks and provide close to optimal results in IEEE 802.11ax networks.","PeriodicalId":132845,"journal":{"name":"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FTMRate: Collision-Immune Distance-based Data Rate Selection for IEEE 802.11 Networks\",\"authors\":\"Wojciech Ciezobka, Maksymilian Wojnar, Katarzyna Kosek-Szott, S. Szott, Krzysztof Rusek\",\"doi\":\"10.1109/WoWMoM57956.2023.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data rate selection algorithms for Wi-Fi devices are an important area of research because they directly impact performance. Most of the proposals are based on measuring the transmission success probability for a given data rate. In dense scenarios, however, this probing approach will fail because frame collisions are misinterpreted as erroneous data rate selection. We propose FTMRate which uses the fine timing measurement (FTM) feature, recently introduced in IEEE 802.11. FTM allows stations to measure their distance from the AP. We argue that knowledge of the distance from the receiver can be useful in determining which data rate to use. We apply statistical learning (a form of machine learning) to estimate the distance based on measurements, estimate channel quality from the distance, and select data rates based on channel quality. We evaluate three distinct estimation approaches: exponential smoothing, Kalman filter, and particle filter. We present a performance evaluation of the three variants of FTMRate and show, in several dense and mobile (though line-of-sight only) scenarios, that it can outperform two benchmarks and provide close to optimal results in IEEE 802.11ax networks.\",\"PeriodicalId\":132845,\"journal\":{\"name\":\"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WoWMoM57956.2023.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM57956.2023.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Wi-Fi设备的数据速率选择算法是一个重要的研究领域,因为它直接影响到性能。大多数建议都是基于测量给定数据速率的传输成功概率。然而,在密集的场景中,这种探测方法将失败,因为帧冲突被错误地解释为错误的数据速率选择。我们提出了FTMRate,它使用了最近在IEEE 802.11中引入的精细定时测量(FTM)特性。FTM允许电台测量它们与AP的距离。我们认为,了解与接收器的距离对于确定使用哪种数据速率是有用的。我们应用统计学习(机器学习的一种形式)来根据测量估计距离,从距离估计信道质量,并根据信道质量选择数据速率。我们评估了三种不同的估计方法:指数平滑,卡尔曼滤波和粒子滤波。我们对FTMRate的三种变体进行了性能评估,并在几个密集和移动(尽管只有视距)场景中显示,它可以优于两个基准测试,并在IEEE 802.11ax网络中提供接近最佳的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FTMRate: Collision-Immune Distance-based Data Rate Selection for IEEE 802.11 Networks
Data rate selection algorithms for Wi-Fi devices are an important area of research because they directly impact performance. Most of the proposals are based on measuring the transmission success probability for a given data rate. In dense scenarios, however, this probing approach will fail because frame collisions are misinterpreted as erroneous data rate selection. We propose FTMRate which uses the fine timing measurement (FTM) feature, recently introduced in IEEE 802.11. FTM allows stations to measure their distance from the AP. We argue that knowledge of the distance from the receiver can be useful in determining which data rate to use. We apply statistical learning (a form of machine learning) to estimate the distance based on measurements, estimate channel quality from the distance, and select data rates based on channel quality. We evaluate three distinct estimation approaches: exponential smoothing, Kalman filter, and particle filter. We present a performance evaluation of the three variants of FTMRate and show, in several dense and mobile (though line-of-sight only) scenarios, that it can outperform two benchmarks and provide close to optimal results in IEEE 802.11ax networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信