在Xilinx Spartan FPGA上实现时间导数cnn

J. Albó-Canals, G. E. Pazienza
{"title":"在Xilinx Spartan FPGA上实现时间导数cnn","authors":"J. Albó-Canals, G. E. Pazienza","doi":"10.1109/CNNA.2012.6331418","DOIUrl":null,"url":null,"abstract":"Time-Derivative CNNs (TDCNNs) have been recently proposed as a novel paradigm realizing spatiotemporal transfer functions for linear filtering. Their dynamics is usually simulated with SIMULINK because VLSI chips are still in the preliminary phase. In order to make TDCNNs available to a larger audience, we present here their implementation on a Xilinx Spartan-6 FPGA. The results concerning an 8×8 network are promising and consistent with the SW simulations.","PeriodicalId":387536,"journal":{"name":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementing Time-Derivative CNNs on a Xilinx Spartan FPGA\",\"authors\":\"J. Albó-Canals, G. E. Pazienza\",\"doi\":\"10.1109/CNNA.2012.6331418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-Derivative CNNs (TDCNNs) have been recently proposed as a novel paradigm realizing spatiotemporal transfer functions for linear filtering. Their dynamics is usually simulated with SIMULINK because VLSI chips are still in the preliminary phase. In order to make TDCNNs available to a larger audience, we present here their implementation on a Xilinx Spartan-6 FPGA. The results concerning an 8×8 network are promising and consistent with the SW simulations.\",\"PeriodicalId\":387536,\"journal\":{\"name\":\"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.2012.6331418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2012.6331418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

时间导数cnn (tdcnn)作为一种实现线性滤波时空传递函数的新范式最近被提出。由于VLSI芯片仍处于初步阶段,因此通常使用SIMULINK来模拟它们的动态。为了使TDCNNs能够面向更多的受众,我们在这里展示了它们在Xilinx Spartan-6 FPGA上的实现。对8×8网络的模拟结果与SW模拟结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementing Time-Derivative CNNs on a Xilinx Spartan FPGA
Time-Derivative CNNs (TDCNNs) have been recently proposed as a novel paradigm realizing spatiotemporal transfer functions for linear filtering. Their dynamics is usually simulated with SIMULINK because VLSI chips are still in the preliminary phase. In order to make TDCNNs available to a larger audience, we present here their implementation on a Xilinx Spartan-6 FPGA. The results concerning an 8×8 network are promising and consistent with the SW simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信