{"title":"分支目标缓冲区的策略","authors":"B. Bray, M. Flynn","doi":"10.1145/123465.123473","DOIUrl":null,"url":null,"abstract":"Achieving high instruction issue rates depends on the ability to dynamically predict branches. We compare two schemes for dynamic branch prediction: a separate branch target buffer and an instruction cache based branch target buffer. For instruction caches of 4KB and greater, instruction cache based branch prediction performance is a strong function of line size, and a weak function of instruction cache size. An instruction cache based branch target buffer with a line size of 8 (or 4) instructions performs about as well as a separate branch target buffer structure which has 64 (or 256, respectively) entries. Software can rearrange basic blocks in a procedure to reduce the number of taken branches, thus reducing the amount of branch prediction hardware needed. With software assistance, predicting all branches as not branching performs as well as a 4 entry branch target buffer without assistance, and a 4 entry branch target buffer with assistance performs as well as a 32 entry branch target buffer without assistance. The instruction cache based branch target buffer also benefits from the software, but only for line sizes of more than 4 instructions.","PeriodicalId":118572,"journal":{"name":"MICRO 24","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Strategies for branch target buffers\",\"authors\":\"B. Bray, M. Flynn\",\"doi\":\"10.1145/123465.123473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving high instruction issue rates depends on the ability to dynamically predict branches. We compare two schemes for dynamic branch prediction: a separate branch target buffer and an instruction cache based branch target buffer. For instruction caches of 4KB and greater, instruction cache based branch prediction performance is a strong function of line size, and a weak function of instruction cache size. An instruction cache based branch target buffer with a line size of 8 (or 4) instructions performs about as well as a separate branch target buffer structure which has 64 (or 256, respectively) entries. Software can rearrange basic blocks in a procedure to reduce the number of taken branches, thus reducing the amount of branch prediction hardware needed. With software assistance, predicting all branches as not branching performs as well as a 4 entry branch target buffer without assistance, and a 4 entry branch target buffer with assistance performs as well as a 32 entry branch target buffer without assistance. The instruction cache based branch target buffer also benefits from the software, but only for line sizes of more than 4 instructions.\",\"PeriodicalId\":118572,\"journal\":{\"name\":\"MICRO 24\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MICRO 24\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/123465.123473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MICRO 24","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/123465.123473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Achieving high instruction issue rates depends on the ability to dynamically predict branches. We compare two schemes for dynamic branch prediction: a separate branch target buffer and an instruction cache based branch target buffer. For instruction caches of 4KB and greater, instruction cache based branch prediction performance is a strong function of line size, and a weak function of instruction cache size. An instruction cache based branch target buffer with a line size of 8 (or 4) instructions performs about as well as a separate branch target buffer structure which has 64 (or 256, respectively) entries. Software can rearrange basic blocks in a procedure to reduce the number of taken branches, thus reducing the amount of branch prediction hardware needed. With software assistance, predicting all branches as not branching performs as well as a 4 entry branch target buffer without assistance, and a 4 entry branch target buffer with assistance performs as well as a 32 entry branch target buffer without assistance. The instruction cache based branch target buffer also benefits from the software, but only for line sizes of more than 4 instructions.