分支目标缓冲区的策略

MICRO 24 Pub Date : 1991-09-01 DOI:10.1145/123465.123473
B. Bray, M. Flynn
{"title":"分支目标缓冲区的策略","authors":"B. Bray, M. Flynn","doi":"10.1145/123465.123473","DOIUrl":null,"url":null,"abstract":"Achieving high instruction issue rates depends on the ability to dynamically predict branches. We compare two schemes for dynamic branch prediction: a separate branch target buffer and an instruction cache based branch target buffer. For instruction caches of 4KB and greater, instruction cache based branch prediction performance is a strong function of line size, and a weak function of instruction cache size. An instruction cache based branch target buffer with a line size of 8 (or 4) instructions performs about as well as a separate branch target buffer structure which has 64 (or 256, respectively) entries. Software can rearrange basic blocks in a procedure to reduce the number of taken branches, thus reducing the amount of branch prediction hardware needed. With software assistance, predicting all branches as not branching performs as well as a 4 entry branch target buffer without assistance, and a 4 entry branch target buffer with assistance performs as well as a 32 entry branch target buffer without assistance. The instruction cache based branch target buffer also benefits from the software, but only for line sizes of more than 4 instructions.","PeriodicalId":118572,"journal":{"name":"MICRO 24","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Strategies for branch target buffers\",\"authors\":\"B. Bray, M. Flynn\",\"doi\":\"10.1145/123465.123473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving high instruction issue rates depends on the ability to dynamically predict branches. We compare two schemes for dynamic branch prediction: a separate branch target buffer and an instruction cache based branch target buffer. For instruction caches of 4KB and greater, instruction cache based branch prediction performance is a strong function of line size, and a weak function of instruction cache size. An instruction cache based branch target buffer with a line size of 8 (or 4) instructions performs about as well as a separate branch target buffer structure which has 64 (or 256, respectively) entries. Software can rearrange basic blocks in a procedure to reduce the number of taken branches, thus reducing the amount of branch prediction hardware needed. With software assistance, predicting all branches as not branching performs as well as a 4 entry branch target buffer without assistance, and a 4 entry branch target buffer with assistance performs as well as a 32 entry branch target buffer without assistance. The instruction cache based branch target buffer also benefits from the software, but only for line sizes of more than 4 instructions.\",\"PeriodicalId\":118572,\"journal\":{\"name\":\"MICRO 24\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MICRO 24\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/123465.123473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MICRO 24","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/123465.123473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

实现高指令发布率取决于动态预测分支的能力。我们比较了两种动态分支预测方案:单独的分支目标缓冲区和基于指令缓存的分支目标缓冲区。对于4KB及以上的指令缓存,基于指令缓存的分支预测性能是行大小的强函数,而指令缓存大小的弱函数。基于指令缓存的分支目标缓冲区的行大小为8(或4)条指令,其性能与具有64(或256)个条目的单独分支目标缓冲区结构差不多。软件可以重新排列程序中的基本块,以减少所取分支的数量,从而减少所需的分支预测硬件的数量。在软件辅助下,预测所有未分支的分支的性能与没有辅助的4个分支目标缓冲区的性能一样好,而有辅助的4个分支目标缓冲区的性能与没有辅助的32个分支目标缓冲区的性能一样好。基于指令缓存的分支目标缓冲区也受益于该软件,但仅适用于行大小超过4条指令。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategies for branch target buffers
Achieving high instruction issue rates depends on the ability to dynamically predict branches. We compare two schemes for dynamic branch prediction: a separate branch target buffer and an instruction cache based branch target buffer. For instruction caches of 4KB and greater, instruction cache based branch prediction performance is a strong function of line size, and a weak function of instruction cache size. An instruction cache based branch target buffer with a line size of 8 (or 4) instructions performs about as well as a separate branch target buffer structure which has 64 (or 256, respectively) entries. Software can rearrange basic blocks in a procedure to reduce the number of taken branches, thus reducing the amount of branch prediction hardware needed. With software assistance, predicting all branches as not branching performs as well as a 4 entry branch target buffer without assistance, and a 4 entry branch target buffer with assistance performs as well as a 32 entry branch target buffer without assistance. The instruction cache based branch target buffer also benefits from the software, but only for line sizes of more than 4 instructions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信