{"title":"基于自适应图像分割和拉普拉斯卷积的快速噪声水平估计算法","authors":"E. Turajlić","doi":"10.23919/MIPRO.2017.7973474","DOIUrl":null,"url":null,"abstract":"This paper proposes a fast algorithm for additive white Gaussian noise level estimation from still digital images. The proposed algorithm uses a Laplacian operator to suppress the underlying image signal. In addition, the algorithm performs a non-overlapping block segmentation of images in conjunction with the local averaging to obtain the local noise level estimates. These local noise level estimates facilitate a variable block size image tessellation and adaptive estimation of homogenous image patches. Thus, the proposed algorithm can be described as a hybrid method as it adopts some principal characteristics of both filter-based and block-based methods. The performance of the proposed noise estimation algorithm is evaluated on a dataset of natural images. The results show that the proposed algorithm is able to provide a consistent performance across different image types and noise levels. In addition, it has been demonstrated that the adaptive nature of homogenous block estimation improves the computational efficiency of the algorithm.","PeriodicalId":203046,"journal":{"name":"2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A fast noise level estimation algorithm based on adaptive image segmentation and Laplacian convolution\",\"authors\":\"E. Turajlić\",\"doi\":\"10.23919/MIPRO.2017.7973474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a fast algorithm for additive white Gaussian noise level estimation from still digital images. The proposed algorithm uses a Laplacian operator to suppress the underlying image signal. In addition, the algorithm performs a non-overlapping block segmentation of images in conjunction with the local averaging to obtain the local noise level estimates. These local noise level estimates facilitate a variable block size image tessellation and adaptive estimation of homogenous image patches. Thus, the proposed algorithm can be described as a hybrid method as it adopts some principal characteristics of both filter-based and block-based methods. The performance of the proposed noise estimation algorithm is evaluated on a dataset of natural images. The results show that the proposed algorithm is able to provide a consistent performance across different image types and noise levels. In addition, it has been demonstrated that the adaptive nature of homogenous block estimation improves the computational efficiency of the algorithm.\",\"PeriodicalId\":203046,\"journal\":{\"name\":\"2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MIPRO.2017.7973474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MIPRO.2017.7973474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fast noise level estimation algorithm based on adaptive image segmentation and Laplacian convolution
This paper proposes a fast algorithm for additive white Gaussian noise level estimation from still digital images. The proposed algorithm uses a Laplacian operator to suppress the underlying image signal. In addition, the algorithm performs a non-overlapping block segmentation of images in conjunction with the local averaging to obtain the local noise level estimates. These local noise level estimates facilitate a variable block size image tessellation and adaptive estimation of homogenous image patches. Thus, the proposed algorithm can be described as a hybrid method as it adopts some principal characteristics of both filter-based and block-based methods. The performance of the proposed noise estimation algorithm is evaluated on a dataset of natural images. The results show that the proposed algorithm is able to provide a consistent performance across different image types and noise levels. In addition, it has been demonstrated that the adaptive nature of homogenous block estimation improves the computational efficiency of the algorithm.