基于测量的异常检测技术的有效性评价

S. Kim, A. Reddy
{"title":"基于测量的异常检测技术的有效性评价","authors":"S. Kim, A. Reddy","doi":"10.1109/ICDCSW.2006.16","DOIUrl":null,"url":null,"abstract":"A number of recent studies have proposed measurement based approaches to network traffic analysis. These techniques treat traffic volume and traffic header data as signals or images in order to make analysis feasible. We use trace-driven experiments and compare the performance of different strategies. Our evaluations on real traces reveal differences in the effectiveness of different traffic header data as potential signals for traffic analysis in terms of their detection rates and false alarm rates. Our results show that address distributions and number of flows are better signals than traffic volume for anomaly detection.","PeriodicalId":333505,"journal":{"name":"26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW'06)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Evaluation of the Effectiveness of Measurement-based Anomaly Detection Techniques\",\"authors\":\"S. Kim, A. Reddy\",\"doi\":\"10.1109/ICDCSW.2006.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of recent studies have proposed measurement based approaches to network traffic analysis. These techniques treat traffic volume and traffic header data as signals or images in order to make analysis feasible. We use trace-driven experiments and compare the performance of different strategies. Our evaluations on real traces reveal differences in the effectiveness of different traffic header data as potential signals for traffic analysis in terms of their detection rates and false alarm rates. Our results show that address distributions and number of flows are better signals than traffic volume for anomaly detection.\",\"PeriodicalId\":333505,\"journal\":{\"name\":\"26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW'06)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCSW.2006.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCSW.2006.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近的一些研究提出了基于测量的网络流量分析方法。这些技术将交通量和交通头数据作为信号或图像处理,使分析变得可行。我们使用跟踪驱动实验,并比较了不同策略的性能。我们对真实痕迹的评估揭示了不同流量头数据作为流量分析潜在信号在检测率和虚警率方面的有效性差异。结果表明,地址分布和流量数量是较好的异常检测信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Evaluation of the Effectiveness of Measurement-based Anomaly Detection Techniques
A number of recent studies have proposed measurement based approaches to network traffic analysis. These techniques treat traffic volume and traffic header data as signals or images in order to make analysis feasible. We use trace-driven experiments and compare the performance of different strategies. Our evaluations on real traces reveal differences in the effectiveness of different traffic header data as potential signals for traffic analysis in terms of their detection rates and false alarm rates. Our results show that address distributions and number of flows are better signals than traffic volume for anomaly detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信