{"title":"具有成本效益的三维片上网络tsv共享拓扑设计","authors":"Poona Bahrebar, D. Stroobandt","doi":"10.1145/2835512.2835514","DOIUrl":null,"url":null,"abstract":"The Through-Silicon Via (TSV) technology has led to major breakthroughs in 3D stacking by providing higher speed and bandwidth, as well as lower power dissipation for the inter-layer communication. However, the current TSV fabrication suffers from a considerable area footprint and yield loss. Thus, it is necessary to restrict the number of TSVs in order to design cost-effective 3D on-chip networks. This critical issue can be addressed by clustering the network such that all of the routers within each cluster share a single TSV pillar for the vertical packet transmission. In some of the existing topologies, additional cluster routers are augmented into the mesh structure to handle the shared TSVs. However, they impose either performance degradation or power/area overhead to the system. Furthermore, the resulting architecture is no longer a mesh. In this paper, we redefine the clusters by replacing some routers in the mesh with the cluster routers, such that the mesh structure is preserved. The simulation results demonstrate a better equilibrium between performance and cost, using the proposed models.","PeriodicalId":424680,"journal":{"name":"Proceedings of the 8th International Workshop on Network on Chip Architectures","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of TSV-Sharing Topologies for Cost-Effective 3D Networks-on-Chip\",\"authors\":\"Poona Bahrebar, D. Stroobandt\",\"doi\":\"10.1145/2835512.2835514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Through-Silicon Via (TSV) technology has led to major breakthroughs in 3D stacking by providing higher speed and bandwidth, as well as lower power dissipation for the inter-layer communication. However, the current TSV fabrication suffers from a considerable area footprint and yield loss. Thus, it is necessary to restrict the number of TSVs in order to design cost-effective 3D on-chip networks. This critical issue can be addressed by clustering the network such that all of the routers within each cluster share a single TSV pillar for the vertical packet transmission. In some of the existing topologies, additional cluster routers are augmented into the mesh structure to handle the shared TSVs. However, they impose either performance degradation or power/area overhead to the system. Furthermore, the resulting architecture is no longer a mesh. In this paper, we redefine the clusters by replacing some routers in the mesh with the cluster routers, such that the mesh structure is preserved. The simulation results demonstrate a better equilibrium between performance and cost, using the proposed models.\",\"PeriodicalId\":424680,\"journal\":{\"name\":\"Proceedings of the 8th International Workshop on Network on Chip Architectures\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th International Workshop on Network on Chip Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2835512.2835514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Workshop on Network on Chip Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835512.2835514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of TSV-Sharing Topologies for Cost-Effective 3D Networks-on-Chip
The Through-Silicon Via (TSV) technology has led to major breakthroughs in 3D stacking by providing higher speed and bandwidth, as well as lower power dissipation for the inter-layer communication. However, the current TSV fabrication suffers from a considerable area footprint and yield loss. Thus, it is necessary to restrict the number of TSVs in order to design cost-effective 3D on-chip networks. This critical issue can be addressed by clustering the network such that all of the routers within each cluster share a single TSV pillar for the vertical packet transmission. In some of the existing topologies, additional cluster routers are augmented into the mesh structure to handle the shared TSVs. However, they impose either performance degradation or power/area overhead to the system. Furthermore, the resulting architecture is no longer a mesh. In this paper, we redefine the clusters by replacing some routers in the mesh with the cluster routers, such that the mesh structure is preserved. The simulation results demonstrate a better equilibrium between performance and cost, using the proposed models.