{"title":"用于低复杂度容错系统的无搜索DEC BCH解码器","authors":"Injae Yoo, I. Park","doi":"10.1109/SiPS.2014.6986060","DOIUrl":null,"url":null,"abstract":"This paper proposes a new decoding algorithm and its decoder architecture to completely remove the parallel Chien search in double error correcting (DEC) BCH decoders. The proposed algorithm called search-less decoding utilizes a quadratic formula to efficiently compute the roots of an error-location polynomial in the finite field. Since the parallel Chien search block dominates the overall complexity of a conventional DEC BCH decoder, the proposed algorithm is effective in mitigating the hardware complexity. Furthermore, a search-less (44, 32, 2) BCH decoder architecture is proposed for fault-tolerant embedded systems. Compared to the conventional decoder associated with 16-parallel Chien search, the proposed decoder decreases the hardware complexity by 51% without sacrificing the decoding throughput.","PeriodicalId":167156,"journal":{"name":"2014 IEEE Workshop on Signal Processing Systems (SiPS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A search-less DEC BCH decoder for low-complexity fault-tolerant systems\",\"authors\":\"Injae Yoo, I. Park\",\"doi\":\"10.1109/SiPS.2014.6986060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new decoding algorithm and its decoder architecture to completely remove the parallel Chien search in double error correcting (DEC) BCH decoders. The proposed algorithm called search-less decoding utilizes a quadratic formula to efficiently compute the roots of an error-location polynomial in the finite field. Since the parallel Chien search block dominates the overall complexity of a conventional DEC BCH decoder, the proposed algorithm is effective in mitigating the hardware complexity. Furthermore, a search-less (44, 32, 2) BCH decoder architecture is proposed for fault-tolerant embedded systems. Compared to the conventional decoder associated with 16-parallel Chien search, the proposed decoder decreases the hardware complexity by 51% without sacrificing the decoding throughput.\",\"PeriodicalId\":167156,\"journal\":{\"name\":\"2014 IEEE Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS.2014.6986060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2014.6986060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A search-less DEC BCH decoder for low-complexity fault-tolerant systems
This paper proposes a new decoding algorithm and its decoder architecture to completely remove the parallel Chien search in double error correcting (DEC) BCH decoders. The proposed algorithm called search-less decoding utilizes a quadratic formula to efficiently compute the roots of an error-location polynomial in the finite field. Since the parallel Chien search block dominates the overall complexity of a conventional DEC BCH decoder, the proposed algorithm is effective in mitigating the hardware complexity. Furthermore, a search-less (44, 32, 2) BCH decoder architecture is proposed for fault-tolerant embedded systems. Compared to the conventional decoder associated with 16-parallel Chien search, the proposed decoder decreases the hardware complexity by 51% without sacrificing the decoding throughput.