泊松方程边值问题的可解性

B.B. Orman, B. Turmetov
{"title":"泊松方程边值问题的可解性","authors":"B.B. Orman, B. Turmetov","doi":"10.47526/2022-3/2524-0080.01","DOIUrl":null,"url":null,"abstract":"This work is devoted to the study of the solvability of some boundary value problems for the Poisson equation. Boundary operators are defined using fractional derivatives. The problems under consideration generalize the well-known Dirichlet and Neumann problems for the Poisson equation. The problems under study are solved by using operator methods. In the article solutions of the considered problems are determined and their uniqueness is proved.","PeriodicalId":171505,"journal":{"name":"Q A Iasaýı atyndaǵy Halyqaralyq qazaq-túrіk ýnıversıtetіnіń habarlary (fızıka matematıka ınformatıka serııasy)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the solvability of some boundary value problems for the Poisson equation\",\"authors\":\"B.B. Orman, B. Turmetov\",\"doi\":\"10.47526/2022-3/2524-0080.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is devoted to the study of the solvability of some boundary value problems for the Poisson equation. Boundary operators are defined using fractional derivatives. The problems under consideration generalize the well-known Dirichlet and Neumann problems for the Poisson equation. The problems under study are solved by using operator methods. In the article solutions of the considered problems are determined and their uniqueness is proved.\",\"PeriodicalId\":171505,\"journal\":{\"name\":\"Q A Iasaýı atyndaǵy Halyqaralyq qazaq-túrіk ýnıversıtetіnіń habarlary (fızıka matematıka ınformatıka serııasy)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Q A Iasaýı atyndaǵy Halyqaralyq qazaq-túrіk ýnıversıtetіnіń habarlary (fızıka matematıka ınformatıka serııasy)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47526/2022-3/2524-0080.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Q A Iasaýı atyndaǵy Halyqaralyq qazaq-túrіk ýnıversıtetіnіń habarlary (fızıka matematıka ınformatıka serııasy)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47526/2022-3/2524-0080.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了泊松方程边值问题的可解性。边界算子是用分数阶导数定义的。所考虑的问题推广了著名的泊松方程的狄利克雷和诺伊曼问题。用算子方法求解了所研究的问题。本文确定了所考虑问题的解,并证明了它们的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the solvability of some boundary value problems for the Poisson equation
This work is devoted to the study of the solvability of some boundary value problems for the Poisson equation. Boundary operators are defined using fractional derivatives. The problems under consideration generalize the well-known Dirichlet and Neumann problems for the Poisson equation. The problems under study are solved by using operator methods. In the article solutions of the considered problems are determined and their uniqueness is proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信