正在进行的工作:基于多层次HfOx ReRAM的像素级处理加速器

Minhaz Abedin, A. Roohi, N. Cady, Shaahin Angizi
{"title":"正在进行的工作:基于多层次HfOx ReRAM的像素级处理加速器","authors":"Minhaz Abedin, A. Roohi, N. Cady, Shaahin Angizi","doi":"10.1109/CASES55004.2022.00025","DOIUrl":null,"url":null,"abstract":"This work paves the way to realize a processing-in-pixel accelerator based on a multi-level HfOx ReRAM as a flexible, energy-efficient, and high-performance solution for real-time and smart image processing at edge devices. The proposed design intrinsically implements and supports a coarse-grained convolution operation in low-bit-width neural networks leveraging a novel compute-pixel with non-volatile weight storage at the sensor side. Our evaluations show that such a design can remarkably reduce the power consumption of data conversion and transmission to an off-chip processor maintaining accuracy compared with the recent in-sensor computing designs.","PeriodicalId":331181,"journal":{"name":"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Work-in-Progress: A Processing-in-Pixel Accelerator based on Multi-level HfOx ReRAM\",\"authors\":\"Minhaz Abedin, A. Roohi, N. Cady, Shaahin Angizi\",\"doi\":\"10.1109/CASES55004.2022.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work paves the way to realize a processing-in-pixel accelerator based on a multi-level HfOx ReRAM as a flexible, energy-efficient, and high-performance solution for real-time and smart image processing at edge devices. The proposed design intrinsically implements and supports a coarse-grained convolution operation in low-bit-width neural networks leveraging a novel compute-pixel with non-volatile weight storage at the sensor side. Our evaluations show that such a design can remarkably reduce the power consumption of data conversion and transmission to an off-chip processor maintaining accuracy compared with the recent in-sensor computing designs.\",\"PeriodicalId\":331181,\"journal\":{\"name\":\"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASES55004.2022.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASES55004.2022.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作为实现基于多层次HfOx ReRAM的像素级处理加速器铺平了道路,作为边缘设备实时和智能图像处理的灵活,节能和高性能解决方案。所提出的设计本质上实现并支持低位宽神经网络中的粗粒度卷积操作,利用传感器侧具有非易失性权重存储的新型计算像素。我们的评估表明,与最近的传感器内计算设计相比,这种设计可以显着降低数据转换和传输到片外处理器的功耗,并保持精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Work-in-Progress: A Processing-in-Pixel Accelerator based on Multi-level HfOx ReRAM
This work paves the way to realize a processing-in-pixel accelerator based on a multi-level HfOx ReRAM as a flexible, energy-efficient, and high-performance solution for real-time and smart image processing at edge devices. The proposed design intrinsically implements and supports a coarse-grained convolution operation in low-bit-width neural networks leveraging a novel compute-pixel with non-volatile weight storage at the sensor side. Our evaluations show that such a design can remarkably reduce the power consumption of data conversion and transmission to an off-chip processor maintaining accuracy compared with the recent in-sensor computing designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信