连续密度上Kullback-Leibler散度的Choquet积分参数辨识及其在分类融合中的应用

E. Ramasso, S. Jullien
{"title":"连续密度上Kullback-Leibler散度的Choquet积分参数辨识及其在分类融合中的应用","authors":"E. Ramasso, S. Jullien","doi":"10.2991/eusflat.2011.69","DOIUrl":null,"url":null,"abstract":"Classifier fusion is a means to increase accuracy and decision-making of classification systems by designing a set of basis classifiers and then combining their outputs. The combination is made up by non linear functional dependent on fuzzy measures called Choquet integral. It constitues a vast family of aggregation operators including minimum, maximum or weighted sum. The main issue before applying the Choquet integral is to identify the 2 M 2 parameters for M classifiers. We follow a previous work by Kojadinovic and one of the authors where the identification is performed using an informationtheoritic approach. The underlying probability densities are made smooth by fitting continuous parametric and then the Kullback-Leibler divergence is used to identify fuzzy measures. The proposed framework is applied on widely used datasets.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Parameter identification in Choquet Integral by the Kullback-Leibler divergence on continuous densities with application to classification fusion\",\"authors\":\"E. Ramasso, S. Jullien\",\"doi\":\"10.2991/eusflat.2011.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifier fusion is a means to increase accuracy and decision-making of classification systems by designing a set of basis classifiers and then combining their outputs. The combination is made up by non linear functional dependent on fuzzy measures called Choquet integral. It constitues a vast family of aggregation operators including minimum, maximum or weighted sum. The main issue before applying the Choquet integral is to identify the 2 M 2 parameters for M classifiers. We follow a previous work by Kojadinovic and one of the authors where the identification is performed using an informationtheoritic approach. The underlying probability densities are made smooth by fitting continuous parametric and then the Kullback-Leibler divergence is used to identify fuzzy measures. The proposed framework is applied on widely used datasets.\",\"PeriodicalId\":403191,\"journal\":{\"name\":\"EUSFLAT Conf.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EUSFLAT Conf.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/eusflat.2011.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

分类器融合是一种通过设计一组基本分类器,然后将它们的输出组合起来,来提高分类系统的准确率和决策能力的方法。该组合由依赖于模糊测度的非线性泛函组成,称为Choquet积分。它构成了一个庞大的集合算子族,包括最小、最大或加权和。在应用Choquet积分之前的主要问题是识别M个分类器的2m个参数。我们遵循Kojadinovic和其中一位作者之前的工作,其中使用信息理论方法进行识别。通过拟合连续参数使底层概率密度平滑,然后利用Kullback-Leibler散度识别模糊测度。该框架被应用于广泛使用的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter identification in Choquet Integral by the Kullback-Leibler divergence on continuous densities with application to classification fusion
Classifier fusion is a means to increase accuracy and decision-making of classification systems by designing a set of basis classifiers and then combining their outputs. The combination is made up by non linear functional dependent on fuzzy measures called Choquet integral. It constitues a vast family of aggregation operators including minimum, maximum or weighted sum. The main issue before applying the Choquet integral is to identify the 2 M 2 parameters for M classifiers. We follow a previous work by Kojadinovic and one of the authors where the identification is performed using an informationtheoritic approach. The underlying probability densities are made smooth by fitting continuous parametric and then the Kullback-Leibler divergence is used to identify fuzzy measures. The proposed framework is applied on widely used datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信