{"title":"连续密度上Kullback-Leibler散度的Choquet积分参数辨识及其在分类融合中的应用","authors":"E. Ramasso, S. Jullien","doi":"10.2991/eusflat.2011.69","DOIUrl":null,"url":null,"abstract":"Classifier fusion is a means to increase accuracy and decision-making of classification systems by designing a set of basis classifiers and then combining their outputs. The combination is made up by non linear functional dependent on fuzzy measures called Choquet integral. It constitues a vast family of aggregation operators including minimum, maximum or weighted sum. The main issue before applying the Choquet integral is to identify the 2 M 2 parameters for M classifiers. We follow a previous work by Kojadinovic and one of the authors where the identification is performed using an informationtheoritic approach. The underlying probability densities are made smooth by fitting continuous parametric and then the Kullback-Leibler divergence is used to identify fuzzy measures. The proposed framework is applied on widely used datasets.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Parameter identification in Choquet Integral by the Kullback-Leibler divergence on continuous densities with application to classification fusion\",\"authors\":\"E. Ramasso, S. Jullien\",\"doi\":\"10.2991/eusflat.2011.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifier fusion is a means to increase accuracy and decision-making of classification systems by designing a set of basis classifiers and then combining their outputs. The combination is made up by non linear functional dependent on fuzzy measures called Choquet integral. It constitues a vast family of aggregation operators including minimum, maximum or weighted sum. The main issue before applying the Choquet integral is to identify the 2 M 2 parameters for M classifiers. We follow a previous work by Kojadinovic and one of the authors where the identification is performed using an informationtheoritic approach. The underlying probability densities are made smooth by fitting continuous parametric and then the Kullback-Leibler divergence is used to identify fuzzy measures. The proposed framework is applied on widely used datasets.\",\"PeriodicalId\":403191,\"journal\":{\"name\":\"EUSFLAT Conf.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EUSFLAT Conf.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/eusflat.2011.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parameter identification in Choquet Integral by the Kullback-Leibler divergence on continuous densities with application to classification fusion
Classifier fusion is a means to increase accuracy and decision-making of classification systems by designing a set of basis classifiers and then combining their outputs. The combination is made up by non linear functional dependent on fuzzy measures called Choquet integral. It constitues a vast family of aggregation operators including minimum, maximum or weighted sum. The main issue before applying the Choquet integral is to identify the 2 M 2 parameters for M classifiers. We follow a previous work by Kojadinovic and one of the authors where the identification is performed using an informationtheoritic approach. The underlying probability densities are made smooth by fitting continuous parametric and then the Kullback-Leibler divergence is used to identify fuzzy measures. The proposed framework is applied on widely used datasets.