{"title":"基于人在环决策支持系统的FMV ISR传感器自主智能","authors":"Rory A. Lewis","doi":"10.1145/3271553.3271572","DOIUrl":null,"url":null,"abstract":"As the United States Air Force moves towards autonomous labelling of FMV from ISR sensors, it has experienced unforeseen technical and legal challenges. In terms of the technical challenges, this research effort identifies these obstacles and presents solutions for them with detailed step-by-step analysis of the processes, its testing and prototypes. In terms of the legal challenges, the USAF's goals of infusing artificial intelligence into autonomous labelling of FMV is also being challenged by a formidable, looming legal threat of new laws that will force the USAF to include 'humans in the loop' of its artificial intelligence and machine learning systems [20], [7], [15]. Again, we analyze these legal threats and present solutions to allow inclusion of a human in the loop. It is important to note that our solution to these technical and legal challenges form a two-pronged solution that yields a Bench to Battlefield, Government off-the-shelf (GOTS) autonomous FMV labelling system that will, as time goes by, learn and grow in its ISR identification abilities.","PeriodicalId":414782,"journal":{"name":"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous Intelligence for FMV ISR Sensors With A Human In The Loop Decision Support System\",\"authors\":\"Rory A. Lewis\",\"doi\":\"10.1145/3271553.3271572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the United States Air Force moves towards autonomous labelling of FMV from ISR sensors, it has experienced unforeseen technical and legal challenges. In terms of the technical challenges, this research effort identifies these obstacles and presents solutions for them with detailed step-by-step analysis of the processes, its testing and prototypes. In terms of the legal challenges, the USAF's goals of infusing artificial intelligence into autonomous labelling of FMV is also being challenged by a formidable, looming legal threat of new laws that will force the USAF to include 'humans in the loop' of its artificial intelligence and machine learning systems [20], [7], [15]. Again, we analyze these legal threats and present solutions to allow inclusion of a human in the loop. It is important to note that our solution to these technical and legal challenges form a two-pronged solution that yields a Bench to Battlefield, Government off-the-shelf (GOTS) autonomous FMV labelling system that will, as time goes by, learn and grow in its ISR identification abilities.\",\"PeriodicalId\":414782,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3271553.3271572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3271553.3271572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Autonomous Intelligence for FMV ISR Sensors With A Human In The Loop Decision Support System
As the United States Air Force moves towards autonomous labelling of FMV from ISR sensors, it has experienced unforeseen technical and legal challenges. In terms of the technical challenges, this research effort identifies these obstacles and presents solutions for them with detailed step-by-step analysis of the processes, its testing and prototypes. In terms of the legal challenges, the USAF's goals of infusing artificial intelligence into autonomous labelling of FMV is also being challenged by a formidable, looming legal threat of new laws that will force the USAF to include 'humans in the loop' of its artificial intelligence and machine learning systems [20], [7], [15]. Again, we analyze these legal threats and present solutions to allow inclusion of a human in the loop. It is important to note that our solution to these technical and legal challenges form a two-pronged solution that yields a Bench to Battlefield, Government off-the-shelf (GOTS) autonomous FMV labelling system that will, as time goes by, learn and grow in its ISR identification abilities.