利用多元技术评价印度芥菜(Brassica Juncea L Czern and Coss)遗传变异

P. Godara, Shrawan Kumar, Darvinder Kumar
{"title":"利用多元技术评价印度芥菜(Brassica Juncea L Czern and Coss)遗传变异","authors":"P. Godara, Shrawan Kumar, Darvinder Kumar","doi":"10.56228/jart.2022.47315","DOIUrl":null,"url":null,"abstract":"A set of 310 lines of Indian mustard (Brassica juncea L Czern and Coss) were analysed for cluster and principal component analysis (PCA). PCA identified four principal components which explained 65.13% of total variability among the 310 genotypes. Hierarchical cluster analysis grouped 310 genotypes into 3 clusters. Cluster1 included maximum number of 155 genotypes and clusters 3 had the lowest number of 43 genotypes. The grouping pattern of genotypes obtained by cluster analysis and PCA plots was almost similar.","PeriodicalId":418512,"journal":{"name":"Journal of Agriculture Research and Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Genetic Variation in Indian mustard (Brassica Juncea L Czern and Coss) Using Multivariate Techniques\",\"authors\":\"P. Godara, Shrawan Kumar, Darvinder Kumar\",\"doi\":\"10.56228/jart.2022.47315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set of 310 lines of Indian mustard (Brassica juncea L Czern and Coss) were analysed for cluster and principal component analysis (PCA). PCA identified four principal components which explained 65.13% of total variability among the 310 genotypes. Hierarchical cluster analysis grouped 310 genotypes into 3 clusters. Cluster1 included maximum number of 155 genotypes and clusters 3 had the lowest number of 43 genotypes. The grouping pattern of genotypes obtained by cluster analysis and PCA plots was almost similar.\",\"PeriodicalId\":418512,\"journal\":{\"name\":\"Journal of Agriculture Research and Technology\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agriculture Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56228/jart.2022.47315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agriculture Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56228/jart.2022.47315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对310个印度芥菜系(Brassica juncea L Czern和Coss)进行聚类分析和主成分分析(PCA)。主成分分析确定了4个主成分,解释了310个基因型中65.13%的总变异。分层聚类分析将310个基因型分为3个聚类。Cluster1基因型数最多,为155个,cluster3基因型数最少,为43个。聚类分析所得基因型的分型模式与PCA图基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Genetic Variation in Indian mustard (Brassica Juncea L Czern and Coss) Using Multivariate Techniques
A set of 310 lines of Indian mustard (Brassica juncea L Czern and Coss) were analysed for cluster and principal component analysis (PCA). PCA identified four principal components which explained 65.13% of total variability among the 310 genotypes. Hierarchical cluster analysis grouped 310 genotypes into 3 clusters. Cluster1 included maximum number of 155 genotypes and clusters 3 had the lowest number of 43 genotypes. The grouping pattern of genotypes obtained by cluster analysis and PCA plots was almost similar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信