{"title":"网络环境下的行业相互依赖动态","authors":"Ya Qian, W. Härdle, C. Chen","doi":"10.2139/ssrn.2961703","DOIUrl":null,"url":null,"abstract":"This paper contributes to model the industry interconnecting structure in a network context. General predictive model (Rapach et al. 2016) is extended to quantile LASSO regression so as to incorporate tail risks in the construction of industry interdependency networks. Empirical results show a denser network with heterogeneous central industries in tail cases. Network dynamics demonstrate the variety of interdependency across time. Lower tail interdependency structure gives the most accurate out-of-sample forecast of portfolio returns and network centrality-based trading strategies seem to outperform market portfolios, leading to the possible ’too central to fail’ argument.","PeriodicalId":166531,"journal":{"name":"PSN: Interdependence (Topic)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Industry Interdependency Dynamics in a Network Context\",\"authors\":\"Ya Qian, W. Härdle, C. Chen\",\"doi\":\"10.2139/ssrn.2961703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper contributes to model the industry interconnecting structure in a network context. General predictive model (Rapach et al. 2016) is extended to quantile LASSO regression so as to incorporate tail risks in the construction of industry interdependency networks. Empirical results show a denser network with heterogeneous central industries in tail cases. Network dynamics demonstrate the variety of interdependency across time. Lower tail interdependency structure gives the most accurate out-of-sample forecast of portfolio returns and network centrality-based trading strategies seem to outperform market portfolios, leading to the possible ’too central to fail’ argument.\",\"PeriodicalId\":166531,\"journal\":{\"name\":\"PSN: Interdependence (Topic)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Interdependence (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2961703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Interdependence (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2961703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
本文对网络环境下的产业互联结构进行了建模。将一般预测模型(Rapach et al. 2016)扩展为分位数LASSO回归,以便在构建行业相互依赖网络时纳入尾部风险。实证结果表明,在尾部案例中,中心产业具有异质性,网络更加密集。网络动态展示了不同时间的相互依赖的多样性。低尾相互依赖结构给出了最准确的投资组合回报的样本外预测,基于网络中心性的交易策略似乎优于市场投资组合,导致可能的“过于中心而不能失败”的论点。
Industry Interdependency Dynamics in a Network Context
This paper contributes to model the industry interconnecting structure in a network context. General predictive model (Rapach et al. 2016) is extended to quantile LASSO regression so as to incorporate tail risks in the construction of industry interdependency networks. Empirical results show a denser network with heterogeneous central industries in tail cases. Network dynamics demonstrate the variety of interdependency across time. Lower tail interdependency structure gives the most accurate out-of-sample forecast of portfolio returns and network centrality-based trading strategies seem to outperform market portfolios, leading to the possible ’too central to fail’ argument.