亚波长集成光子器件的机器学习设计

D. Melati, M. K. Dezfouli, Y. Grinberg, S. Janz, J. Schmid, P. Cheben, Danxia Xu
{"title":"亚波长集成光子器件的机器学习设计","authors":"D. Melati, M. K. Dezfouli, Y. Grinberg, S. Janz, J. Schmid, P. Cheben, Danxia Xu","doi":"10.1109/NUSOD.2019.8806835","DOIUrl":null,"url":null,"abstract":"Use of subwavelength metastructures opens new degrees of freedom to control and manipulate propagation of light in planar waveguide devices. This advantage comes with the cost of increased design complexity since more parameters must be simultaneously optimized. Here we show how machine learning dimensionality reduction can be used to obtain a compact representation of a multi-parameter design space revealing the relationship between different design parameters. This provides the designer with a global perspective on the design space and enables informed decisions based on the relative priorities of different performance metrics.","PeriodicalId":369769,"journal":{"name":"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning design of subwavelengh integrated photonic devices\",\"authors\":\"D. Melati, M. K. Dezfouli, Y. Grinberg, S. Janz, J. Schmid, P. Cheben, Danxia Xu\",\"doi\":\"10.1109/NUSOD.2019.8806835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Use of subwavelength metastructures opens new degrees of freedom to control and manipulate propagation of light in planar waveguide devices. This advantage comes with the cost of increased design complexity since more parameters must be simultaneously optimized. Here we show how machine learning dimensionality reduction can be used to obtain a compact representation of a multi-parameter design space revealing the relationship between different design parameters. This provides the designer with a global perspective on the design space and enables informed decisions based on the relative priorities of different performance metrics.\",\"PeriodicalId\":369769,\"journal\":{\"name\":\"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2019.8806835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2019.8806835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

亚波长元结构的使用为控制和操纵光在平面波导器件中的传播提供了新的自由度。由于必须同时优化更多参数,因此这种优势的代价是增加了设计复杂性。在这里,我们展示了如何使用机器学习降维来获得多参数设计空间的紧凑表示,揭示了不同设计参数之间的关系。这为设计人员提供了关于设计空间的全局视角,并使他们能够根据不同性能指标的相对优先级做出明智的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning design of subwavelengh integrated photonic devices
Use of subwavelength metastructures opens new degrees of freedom to control and manipulate propagation of light in planar waveguide devices. This advantage comes with the cost of increased design complexity since more parameters must be simultaneously optimized. Here we show how machine learning dimensionality reduction can be used to obtain a compact representation of a multi-parameter design space revealing the relationship between different design parameters. This provides the designer with a global perspective on the design space and enables informed decisions based on the relative priorities of different performance metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信