基于数据驱动的积分二次约束的控制分配性能分析

Manuel Pusch, Daniel Ossmann, Harald Pfifer
{"title":"基于数据驱动的积分二次约束的控制分配性能分析","authors":"Manuel Pusch,&nbsp;Daniel Ossmann,&nbsp;Harald Pfifer","doi":"10.1002/adc2.112","DOIUrl":null,"url":null,"abstract":"<p>A new method is presented for evaluating the performance of a nonlinear control allocation system within a linear control loop. To that end, a worst-case gain analysis problem is formulated that can be readily solved by means of well-established methods from robustness analysis using integral quadratic constraints (IQCs). It exploits the fact that control allocation systems are in general memoryless mappings that can be bounded by IQCs. A data-driven approach is used to find an optimal bound of the input/output mapping of the control allocation. Additionally, an iterative procedure based on local IQCs is introduced to determine meaningful sampling limits for less conservative yet accurate results. The effectiveness of the proposed data-driven performance analysis is shown at the example of an actively controlled flexible wing in a wind tunnel.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.112","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of control allocation using data-driven integral quadratic constraints\",\"authors\":\"Manuel Pusch,&nbsp;Daniel Ossmann,&nbsp;Harald Pfifer\",\"doi\":\"10.1002/adc2.112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new method is presented for evaluating the performance of a nonlinear control allocation system within a linear control loop. To that end, a worst-case gain analysis problem is formulated that can be readily solved by means of well-established methods from robustness analysis using integral quadratic constraints (IQCs). It exploits the fact that control allocation systems are in general memoryless mappings that can be bounded by IQCs. A data-driven approach is used to find an optimal bound of the input/output mapping of the control allocation. Additionally, an iterative procedure based on local IQCs is introduced to determine meaningful sampling limits for less conservative yet accurate results. The effectiveness of the proposed data-driven performance analysis is shown at the example of an actively controlled flexible wing in a wind tunnel.</p>\",\"PeriodicalId\":100030,\"journal\":{\"name\":\"Advanced Control for Applications\",\"volume\":\"4 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.112\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Control for Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adc2.112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Control for Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adc2.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种在线性控制环内评价非线性控制分配系统性能的新方法。为此,制定了一个最坏情况增益分析问题,该问题可以很容易地通过使用积分二次约束(iqc)的鲁棒性分析的成熟方法来解决。它利用了这样一个事实,即控制分配系统通常是由iqc限定的无内存映射。采用数据驱动的方法寻找控制分配的输入/输出映射的最优边界。此外,引入了一个基于局部iqc的迭代过程,以确定有意义的采样限制,以获得不太保守但准确的结果。以风洞主动控制柔性机翼为例,验证了数据驱动性能分析方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Performance analysis of control allocation using data-driven integral quadratic constraints

Performance analysis of control allocation using data-driven integral quadratic constraints

A new method is presented for evaluating the performance of a nonlinear control allocation system within a linear control loop. To that end, a worst-case gain analysis problem is formulated that can be readily solved by means of well-established methods from robustness analysis using integral quadratic constraints (IQCs). It exploits the fact that control allocation systems are in general memoryless mappings that can be bounded by IQCs. A data-driven approach is used to find an optimal bound of the input/output mapping of the control allocation. Additionally, an iterative procedure based on local IQCs is introduced to determine meaningful sampling limits for less conservative yet accurate results. The effectiveness of the proposed data-driven performance analysis is shown at the example of an actively controlled flexible wing in a wind tunnel.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信