{"title":"触觉界面的摩擦建模与补偿","authors":"Nicholas L. Bernstein, D. Lawrence, L. Pao","doi":"10.1109/WHC.2005.59","DOIUrl":null,"url":null,"abstract":"Friction cancellation and high gain force feedback are studied for their relative benefits in mitigating the effects of friction in haptic interfaces. Although either technique alone is capable of significant improvements, we find that a combination of approximate cancellation coupled with variable-gain low-bandwidth force feedback provides excellent friction reduction and is more robust. This improves the feel of the haptic interface, and provides significant linearization of the interface dynamics for more accurate model-based control.","PeriodicalId":117050,"journal":{"name":"First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Friction modeling and compensation for haptic interfaces\",\"authors\":\"Nicholas L. Bernstein, D. Lawrence, L. Pao\",\"doi\":\"10.1109/WHC.2005.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Friction cancellation and high gain force feedback are studied for their relative benefits in mitigating the effects of friction in haptic interfaces. Although either technique alone is capable of significant improvements, we find that a combination of approximate cancellation coupled with variable-gain low-bandwidth force feedback provides excellent friction reduction and is more robust. This improves the feel of the haptic interface, and provides significant linearization of the interface dynamics for more accurate model-based control.\",\"PeriodicalId\":117050,\"journal\":{\"name\":\"First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHC.2005.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHC.2005.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Friction modeling and compensation for haptic interfaces
Friction cancellation and high gain force feedback are studied for their relative benefits in mitigating the effects of friction in haptic interfaces. Although either technique alone is capable of significant improvements, we find that a combination of approximate cancellation coupled with variable-gain low-bandwidth force feedback provides excellent friction reduction and is more robust. This improves the feel of the haptic interface, and provides significant linearization of the interface dynamics for more accurate model-based control.